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Abstract—Quaternions are a useful representation for orienta-
tion, and dual quaternions extend the representation to handle
translations as well. This report discusses computations that can
be performed using quaternions. To accurately compute results
near singularities, we provide Taylor series approximations which
can be efficiently computed to within machine precision.
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I. INTRODUCTION

Quaternions are a convenient representation for spatial mo-
tion that provides some computational advantages over other
methods.

The straightforward definitions of many quaternion quan-
tities, particularly exponentials, logarithms, and derivatives,
contain singularities where a denominator goes to zero. We can
avoid computational problems at these points by computing
key factors near the singularity using a Taylor series, though
this may require some careful rearrangement of terms to
identify suitable factors and series.

A Taylor series evaluated near point a is:



Quaternions

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + . . . (1)

To evaluate the infinite series to machine precision, we only
need to compute up the term below floating point round-off.

The resulting approximation is a polynomial which can
be efficiently evaluated using Horner’s Rule, Algorithm 1.
The coefficients are the terms f(n)(a)

n! and the indeterminate
variable is x − a. Note than many Taylor series have zero
coefficents for the odd or even terms. We can produce a more
compact Horner polynomial by omitting the zero coefficients,
using (x − a)2 as the indeterminate variable, and perhaps
multiplying the whole result by (x− a).

Algorithm 1: Horner’s Rule
Input: b0, b1, . . . bn : Coefficients
Input: z : Indeterminate Variable
Output: y : Result

1 y ← bn
2 y ← bn−1 + zy
3 y ← bn−2 + zy
4 . . .
5 y ← b0 + zy

A. Notation

We adopt the following abbreviations to condense notation:

• Quaternions are typeset as q .
• Dual Quaternions are typeset as S .
• Vectors are typeset as x⃗.
• Matrices are typeset as A.
• Time derivatives of variable x are given as ẋ.
• Sines and cosines are abbreviated as s and c.

II. QUATERNIONS

Quaternions are an extension of the complex numbers, using
basis elements i , j , and k defined as:

i2 = j2 = k 2 = ijk = −1 (2)

From (2), it follows:

jk = −k j = i (3)
ki = −ik = j (4)
ij = −ji = k (5)

A quaternion, then, is:

q = w + xi + yj + zk (6)

Associative p⊗ (q ⊗ r) = (p⊗ q)⊗ r
Distributive p⊗ (q + r) = p⊗ q + p⊗ r

NOT Commutative p⊗ q ̸= q ⊗ p
Conjugate Mul. (p⊗ q)∗ = q∗ ⊗ p∗

Conjugate Add. (p+ q)∗ = q∗ + p∗

TABLE I
ALGEBRAIC QUATERNION PROPERTIES

A. Representation

We represent a quaternion as a 4-tuple of real numbers:

q = w + xi + yj + zk
= (x y z w)

= H(qv, w) (7)

Historically, qv is called the vector part of the quaternion
and qw the scalar part.

It is convenient to define quaternion operations in terms of
vector and matrix operations, so we also the whole quaternion
as a column vector. This also provides an in-memory storage
representation.

q⃗ = [x y z w]T (8)
q⃗v = [x y z]T (9)

A alternate convention stores terms in wxyz order, so when
using different software packages, it is sometimes necessary
to convert between orderings.

B. Multiplication

From the definition of the basis elements (2), we obtain a
formula for quaternion multiplication. See section B for the
detailed derivation.

1) Cross and dot product definition: We define quaternion
multiplication in terms of cross products and dot products of
its elements:

q ⊗ p =

(
q⃗v × p⃗v + qwp⃗v + pw q⃗v

qwpw − q⃗v · p⃗v

)
(10)

2) Matrix definition: Expanding the above terms, we can
express quaternion multiplication as matrix multiplication:

q ⊗ p =

QLp⃗ =


qw −qz qy qx
qz qw −qx qy
−qy qx qw qz
−qx −qy −qz qw

 p⃗ =

PRq⃗ =


pw pz −py px
−pz pw px py
py −px pw pz
−px −py −pz pw

 q⃗ =


qxpw + qypz + qwpx − qzpy
qzpx + qwpy + qypw − qxpz
qwpz + qzpw + qxpy − qypx
−(qypy + qxpx + qzpz − qwpw)

 (11)

This matrix form is more suitable for efficient implementa-
tion computation using SIMD instructions.
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Quaternions

3) Properties: Quaternion multiplication is associative and
distributive, but it is not commutative.

4) Pure Multiplication: When multiplying by a pure quater-
nion, i.e., zero scalar part, we can simplify:

q ⊗ (v, 0) =


qw −qz qy
qz qw −qx
−qy qx qw
−qx −qy −qz

 v =


qyvz
qzvx
qxvy
−qxvx

−

qzvy
qxvz
qyvx
qyvy

+


qwvx
qwvy
qwvz
−qzvz

 (12)

(v, 0)⊗ q =


qw qz −qy
−qz qw qx
qy −qx qw
−qx −qy −qz

 v =


vyqz
vzqx
vxqy
−vxqx

−

vzqy
vxqz
vyqx
vyqy

+


vxqw
vyqw
vzqw
−vzqz

 (13)

(u, 0)⊗ (v, 0) =


uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

−uxvx − uyvy − uzvz

 =

[
u× v
−u · v

]
(14)

Thus, the case of multiplying two pure quaternions simpli-
fies to the commonly used cross (×) and dot (·) products.

C. Norm

|q| =
√
q⃗ · q⃗ (15)

A unit quaternion has norm of one.

D. Conjugate

q∗ = H(−qv, qw) (16)

E. Inverse

q−1 =
q∗

q⃗ · q⃗
(17)

Note that for unit quaternions, the inverse is equal to the
conjugate.

F. Exponential

The exponential shows the relationship between quaternions
and complex numbers. Recall Euler’s formula for complex
numbers:

eiθ = cos (θ) + i sin (θ) (18)

which relates the exponential function with angles in the
complex plane. Similarly for quaternions, we can consider the
angle between the real and imaginary parts, Figure 1, yielding

R

I

qw

|qv|

ϕ

Fig. 1. Imaginary Plane for Quaternions

some useful trigonometric ratios for analyzing quaternion
functions:

ϕ = atan2 (|qv| , qw) (19)

sin (ϕ) =
|qv|
|q|

(20)

cos (ϕ) =
qw
|q|

(21)

The quaternion exponential is:

eq = eqw H

(
qv

sin (|qv|)
|qv|

, cos (|qv|)
)

(22)

When |qv| approaches zero, we can use the Taylor series
approximation:

sin (θ)

θ
= 1− θ2

6
+

θ4

120
− θ6

5040
+ . . . (23)

For a pure quaternion, the exponential simplifies to:

qw = 0 =⇒

{
eq = H

(
qv

sin(|qv|)
|qv| , cos (|qv|)

)
|eq | = 1

(24)

G. Logarithm

To compute the logarithm, first consider the angle between
the vector and scalar parts of the quaternion.

ϕ = cos−1

(
qw
|q|

)
= sin−1

(
|qv|
|q|

)
= atan2 (|qv| , qw) (25)

The atan2 form to compute ϕ is generally best for numerical
stability.

ln q = H

(
ϕ

|qv|
qv, ln (|q|)

)
(26)

When |qv| approaches zero, we can compute ϕ
|qv| as follows:

ϕ

|qv|
=

ϕ
|q|
|qv|
|q|

=

ϕ
|q|

sin (ϕ)
=

ϕ
sin(ϕ)

|q|
(27)

Then, ϕ
sin(ϕ) can be approximated by Taylor series:
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Representing Orientation

θ

sin (θ)
= 1 +

θ2

6
+

7θ4

360
+

31θ6

15120
+ . . . (28)

For a unit quaternion, the logarithm simplifies to:∣∣q∣∣ = 1 =⇒ ln(q) = H

(
ϕ

sin (ϕ)
qv, 0

)
(29)

H. Power

qt = et ln q (30)

I. Pure Exponential Derivative
Becase quaternion multiplication is not commutative, the

chain rule does not apply to the quaternion exponential deriva-
tive:

d exp (f(q))

dt
̸= df(q)

dt
⊗ exp (f(q)) (31)

The derivative of the exponential for a pure quaternion is:

ϕ = |qv| =
√
qv · qv (32)

ϕ̇ =
d |qv|
dt

=
qv · q̇v
ϕ

(33)

eq = H

(
sin (ϕ)

ϕ
qv, cos (ϕ)

)
(34)(

deq

dt

)
w

= − sin (ϕ) ϕ̇ = − (qv · q̇v)
sin (ϕ)

ϕ
(35)(

deq

dt

)
v

=
s
ϕ
q̇v +

(
ϕ̇c
ϕ
− ϕ̇s

ϕ2

)
qv =

s
ϕ
q̇v +

(
c
ϕ2
− s

ϕ3

)
(qv · q̇v) qv =

s
ϕ
q̇v +

( c − s
ϕ

ϕ2

)
(qv · q̇v) qv (36)

Then, we handle the singularity for ϕ = 0 using (23) and
the following:

c
ϕ2
− s

ϕ3
= −1

3
+

ϕ2

30
− ϕ4

840
+

ϕ6

45360
+ . . . (37)

J. Unit Logarithm Derivative
The derivative of the unit quaternion logarithm is:

ln q =
ϕ

sin (ϕ)
qv

d ln q

dt
=

d ϕ
sin(ϕ)

dt
qv +

ϕ

sin (ϕ)
q̇v (38)

where we compute
d ϕ

sin(ϕ)

dt qv as follows:

ϕ̇ =
d cos−1 (w)

dt
=

ẇ

sin (ϕ)

d ϕ
sin(ϕ)

dt
=

ϕ̇

sin (ϕ)
− ϕϕ̇ cos (ϕ)

sin2 (ϕ)

= ẇ

(
− 1

sin2 (ϕ)
+

ϕ cos (ϕ)

sin3 (ϕ)

)
(39)

Representation Storage
Quaternion 4
Axis-Angle 4

Rotation Vector 3
Euler Angles 3

Rotation Matrix 9
TABLE II

STORAGE REQUIREMENTS FOR ORIENTATION REPRESENTATIONS

Representation Chain Rotate Point
Quaternion 16 multiply, 12 add 15 multiply, 15 add

Rotation Matrix 27 multiply, 18 add 9 multiply, 6 add
TABLE III

COMPUTATIONAL REQUIREMENTS FOR ORIENTATION REPRESENTATIONS

Equations (38) and (39) have a singularity at ϕ = 0. We
can handle (38) with (28) and (39) with the following Taylor
series:

− 1

sin2 (ϕ)
+

ϕ cos (ϕ)

sin3 (ϕ)
= −1

3
− 2

15
ϕ2 − 2

63
ϕ4 . . . (40)

Alternatively, one could also use the Jacobian ∂ ln q
∂q =

ϕ
sin(ϕ)

− ϕx2

sin3(ϕ)
− ϕxy

sin3(ϕ)
− ϕxz

sin3(ϕ)
− x

sin2(ϕ)

− ϕxy

sin3(ϕ)

ϕ
sin(ϕ)

− ϕy2

sin3(ϕ)
− ϕyz

sin3(ϕ)
− y

sin2(ϕ)

− ϕxz

sin3(ϕ)
− ϕyz

sin3(ϕ)

ϕ
sin(ϕ)

− ϕz2

sin3(ϕ)
− z

sin2(ϕ)


(41)

K. Unit Quaternion Angle

We can compute the angle between the vector forms of two
unit quaternions as follows:

∠(q⃗1, q⃗2) = cos−1 (q⃗1 · q⃗2) =
2 atan2 (|q1 − q2| , |q1 + q2|) (42)

The atan2 form is more accurate [1].

L. Product Rule

Because quaternion multiplication is a linear operation (see
section B), the product rule applies:

d

dt

(
q1 ⊗ q2

)
= q̇1 ⊗ q2 + q1 ⊗ q̇2 (43)

III. REPRESENTING ORIENTATION

A unit quaternion (
∣∣q∣∣ = 1) can represent an angular

orientation.

A. Rotating a vector

We can rotate point v by unit quaternion q by computing
v′ = rot

(
q , v
)
= q ⊗ v ⊗ q∗. Note that v is augmented with 0

in it’s w position to perform the quaternion multiplication op-
eration. Given this 0 value, the computation can be simplified
to the following:

v′ = rot
(

q , v
)
=

q ⊗ v ⊗ q∗ = 2q⃗v × (q⃗v × v + qwv) + v (44)
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Dual Quaternions and Euclidean Transforms

which we can rewrite in a more SIMD-friendly form as:

a = qv × v + qwv

b = qv × a

v′ = b+ b+ v (45)

B. Chaining rotations
Rotations q1 and q2 are chained by multiplying the two

quaternions: q1 ⊗ q2 .

C. Angular Derivatives
Rotational velocity ω is related to the quaternion derivative

as follows:

q̇ =
1

2
ω ⊗ q (46)

ω = 2q̇ ⊗ q∗ (47)

Rotational acceleration ω̇ is related to the quaternion deriva-
tive as follows:

q̈ =
1

2

(
ω̇ ⊗ q + ω ⊗ q̇

)
(48)

=
1

2
ω̇ = 2

(
q̈ ⊗ q∗ + q̇ ⊗ q̇∗

)
(49)

D. Axis-Angle
The axis-angle form, a = (û, θ) represents rotation by angle

θ around unit axis û. We can also normalize the representation
by scaling the axis by the angle v = θû, which is sometimes
called the rotation vector form.

Rotation vectors are related to unit quaternions through the
exponential and logarithm.

q = H

(
û sin

(
θ

2

)
, cos

(
θ

2

))
= e

θ
2 û =

H

(
v

|v|
sin

(
|v|
2

)
, cos

(
|v|
2

))
= e

v
2 (50)

θ = 2 cos−1 (qw) = 2 tan−1 (|qv| , qw) = 2 |ln q| (51)

û =

{
θ ̸= 0 qv

sin( θ
2 )

θ = 0 0
=

ln q

|ln q|
(52)

v = 2 ln q (53)

The rotation vector and quaternion derivatives are related as
follows, substituting y = v

2 , ẏ = v̇
2 , and ϕ = |y|:

ϕ̇ =
y · ẏ
ϕ

(54)

q̇w = −ϕ̇ sin (ϕ) = (y · ẏ) sin (ϕ)
ϕ

(55)

q̇v =
sin (ϕ)

ϕ
ẏ − ϕ̇ sin (ϕ)

ϕ2
y +

ϕ̇ cos (ϕ)

ϕ
y =

sin (ϕ)

ϕ
ẏ +

(
cos (ϕ)− sin(ϕ)

ϕ

ϕ2

)
(ẏ · y) y (56)

When ϕ goes to zero, we can approximate sin(ϕ)
ϕ with the

series in (23) and the other singular factor as:

cos (ϕ)− sin(ϕ)
ϕ

ϕ2
= −1

3
+

ϕ2

30
− ϕ4

840
+

ϕ6

45360
+ . . . (57)

E. Spherical Linear Interpolation

Spherical Linear Interpolation, SLERP, interpolates between
two quaternions. SLERP can be understood geometrically
by considering a relative orientation in the axis-angle form.
Consider the relative quaternion qr between two endpoints,
q1⊗ qr = q2, given in axis angle form (ûr, θr). To interpolate
between q1 and q2, we apply the q(τ) = q1⊗ qs(τ), where qs
is a rotation about ûr with angle θs varying from 0 to θr as τ
varies from 0 to 1. We can compute the rotation vector form
of qs from that of qr as vs = τvr.

Composing definitions for quaternion and rotation vector
conversion and quaternion exponents:

q(τ) = q1 ⊗ exp
(
τ ln

(
q1

∗ ⊗ q2
))

= q1 ⊗
(

q1
∗ ⊗ q2

)t
(58)

To interpolate in the shorter direction, e.g., −π
2 vs. + 3π

2 ,
scale q1

∗ ⊗ q2 so it has a positive scalar element.
A more efficient computation for SLERP [2] is:

ϕ = |∠(q⃗1, q⃗2)| (59)

θ =

{
ϕ > π

2 π − ϕ

ϕ ≤ π
2 ϕ

(60)

q(τ) =

{
ϕ > π

2
sin(θ−τθ)

sin(θ) q1 − sin(τθ)
sin(θ) q2

ϕ ≤ π
2

sin(θ−τθ)
sin(θ) q1 +

sin(τθ)
sin(θ) q2

(61)

F. Integration

Euler or Runge-Kutta integration of quaternion derivatives
would not preserve the unit constraint, introducing error. We
can instead integrate a constant rotational velocity with:

q1 = exp

(
ω∆t

2

)
⊗ q0 (62)

= exp
(
∆tq̇ ⊗ q∗0

)
⊗ q0 (63)

G. Finite Difference

Based on (62), we can compute a finite difference velocity
ω∆ between two orientations:

ω∆ = 2 ln
(

q1 ⊗ q∗0
)

(64)

q̇∆ = ln
(

q1 ⊗ q∗0
)
⊗ q0 (65)

IV. DUAL QUATERNIONS AND EUCLIDEAN TRANSFORMS

Dual quaternions are convenient for representing Euclidean
transformations. Formally, dual quaternions are the general-
ization of quaternions to dual numbers.
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Dual Quaternions and Euclidean Transforms

A. Dual Numbers

Dual numbers are similar to complex numbers, but the
square of the dual element ε is zero:

z̃ = a+ bε (66)
ε ̸= 0 (67)
ε2 = 0 (68)

If we consider the Taylor series of f(a+ bε) at point a, we
obtain the following property:

f(a+ bε) = f(a) + bf ′(a)ε (69)

This lets us define a few functions for dual numbers:

cos (a+ bε) = cos (a)− sin (a) bε (70)
sin (a+ bε) = sin (a) + cos (a) bε (71)

exp (a+ bε) = ea + eabε (72)
√
a+ bε =

√
a+

b

2
√
a
ε (73)

B. Representation
Dual quaternions are quaternions with dual numbers for

elements.

S =

x̃i + ỹj + z̃k + w̃ =

(rx + dxε)i + (ry + dyε)j + (rz + dzε)k + (rw + dwε) =

(rxi + ry j + rzk + rw) + (dxi + dy j + dzk + dw)ε =

r + d ε (74)

For computation, it is convenient to represent dual quater-
nion S factored into the separate real and dual parts r and
d :

S = r + d ε

= S
r , d

 (75)

C. Construction

We can produce a dual quaternion for some transformation
represented by the rotational quaternion q, and the translation
vector v as follows:

r = q (76)

d =
1

2
v ⊗ r (77)

Translation v is augmented with 0 as the scalar element for
the quaternion multiply. The real part r represents orientation,
and the dual part d represents translation. Note that the real
part r will be a unit quaternion while the dual part d has no
such restriction.

To extract the translation, we do:

v = 2d ⊗ r ∗ (78)

D. Multiplication

Multiplication is defined in terms of the standard quaternion
multiply, performed over both real and dual parts:

A ⊗ B = S
ar ⊗ br , ar ⊗ bd + ad ⊗ br

 (79)

E. Matrix Form

We can also represent the dual quaternion multiplication as
a matrix multiply. Based on (11):

A ⊗ B =

(
ar ⊗ br

ar ⊗ bd + ad ⊗ br

)
=

ALB⃗ =

[
Ar,L 0
Ad,L Ar,L

]
B⃗ =

BRA⃗ =

[
Br,R 0
Bd,R Br,R

]
A⃗ (80)

F. Conjugate

S∗ = S
sr

∗, sd
∗
 (81)

G. Exponential

We derive the dual quaternion exponential by expanding
(22) using dual arithmetic:

ϕ = |rv| (82)
k = rv · dv (83)

eS = ew̃ S

H

(
s
ϕ
rv, c

)
, H

(
s
ϕ
dv +

c − s
ϕ

ϕ2
krv, −

s
ϕ
k

) (84)

where w̃ = rw + dwε.
Then, to handle the singularity at ϕ = 0, we use (23) and:

cos (ϕ)− sin(ϕ)
ϕ

ϕ2
= −1

3
+

ϕ2

30
− ϕ4

840
+

ϕ6

45360
+ . . . (85)

H. Logarithm

We derive the dual quaternion logarithm by expanding (26)
using dual arithmetic:

ϕ = atan2 (|rv| , rw) (86)
k = rv · dv (87)

α =
rw − ϕ

|rv| |r|
2

|rv|2
(88)

(lnS)r = H

(
ϕ

|rv|
rv, ln |r|

)
(89)

(lnS)d = H

(
kα− dw

|r|2
rv +

ϕ

|rv|
dv,

k + rwdw

|r|2

)
(90)

To handle the singularity at |rv| = 0, we apply (27) and
(28) to handle ϕ

|rv| . Then, we rewrite α as:
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Implicit Dual Quaternions

rw − ϕ
|rv| |r|

2

|rv|2
=

rw

|rv|2
− ϕ |r|2

|rv|3
=

rw |r|2

|rv|2 |r|2
− ϕ |r|3

|rv|3 |r|
=

1

|r|

(
rw
|r|
|r|2

|rv|2
− ϕ
|r|3

|rv|3

)
=

1

|r|

(
cos (ϕ)

sin2 (ϕ)
− ϕ

sin3 (ϕ)

)
(91)

This gives the Taylor series:

c
s2
− ϕ

s3
= −2

3
− 1

5
ϕ2 − 17

420
ϕ4 − 29

4200
ϕ6 + . . . (92)

I. Chaining Transforms

Transforms are chained by multiplying the dual quaternions.

J. Transforming a point

We can transform a point v by constructing a dual quater-
nion for translation v and identity rotation, and chaining it
onto the transform, then extracting the resulting translation:

S ′ = S ⊗ S

H(0, 1) ,
1

2
v

 (93)

v′ = 2s ′d ⊗ s ′∗r (94)

This reduces to:

v′ = (2sd + sr ⊗ v)⊗ s∗r (95)

K. Derivatives

1) Product Rule: Because dual quaternion multiplication is
a linear operation (see section B), the product rule applies:

d

dt
(S1 ⊗ S2) = Ṡ1 ⊗ S2 + S1 ⊗ Ṡ2 (96)

2) Angular Velocity: Angular velocity computation is iden-
tical to the single unit quaternion case:

ṙ =
1

2
ω ⊗ r (97)

ω = 2ṙ ⊗ r ∗ (98)

3) Translational Velocity: We find the equation for the
derivative of the dual part by differentiating (77),

ḋ =
1

2
(v̇ ⊗ r + v ⊗ ṙ ) (99)

Translational velocity comes from differentiating (78):

v̇ = 2(ḋ ⊗ r ∗ + d ⊗ (ṙ )∗) (100)

Representation Storage
Dual Quaternion 8

Implicit Dual Quaternion 7
Transformation Matrix 12

TABLE IV
STORAGE REQUIREMENTS FOR TRANSFORMATION REPRESENTATIONS

Representation Chain Transform
Dual Quaternion 48 multiply, 40 add 28 multiply 28 add

Implicit Dual Quaternion 31 multiply, 30 15 multiply, 18 add
Transformation Matrix 36 multiply, 27 add 9 multiply, 9 add

TABLE V
COMPUTATIONAL REQUIREMENTS FOR ORIENTATION REPRESENTATIONS

L. Integration

To integrate dual quaternions, we first introduce the twist,
Ω:

Ω = S
H(ω, 0) , H(v̇ + v × ω, 0)

 (101)

where ω is angular velocity, v is translation, and v̇ is transla-
tional velocity.

Then, integration of a constant velocity is given by:

S1 = exp

(
Ω∆t

2

)
⊗ S0 (102)

V. IMPLICIT DUAL QUATERNIONS

We can implicitly represent the dual quaternion for a
Euclidean transform by storing orientation quaternion r and
translation vector v:

E = Si

r , v
 (103)

This form allows more efficient computation for some
operations.

A. Chaining transforms

From dual quaternion multiplication (79), we derive the
multiplication formula for the implicit form:

Cv = 2Cd ⊗ C∗
r =

2 (Ar ⊗Bd +Ad ⊗Br)⊗ (Ar ⊗Br)
∗
=

2

(
Ar ⊗

Bv ⊗Br

2
+

Av ⊗Ar

2
⊗Br

)
⊗B∗

r ⊗A∗
r =

(Ar ⊗Bv +Av ⊗Ar)⊗A∗
r =

Ar ⊗Bv ⊗A∗
r +Av

This is equivalent to rotating Bv by Ar, then adding Av .
Thus, we chain transforms with:

Cr = Ar ⊗Br (104)
Cv = rot (Ar, Bv) +Av (105)

B. Transforming points

To transform point p, we first rotate it by the given orien-
tation r, then add the translation v

p′ = rot (r, p) + v (106)
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Derivation of Quaternion Multiplication

C. Conjugate

From the dual quaternion conjugate (81) for S = (r, d):

(S∗)v = 2(S∗)d ⊗ ((S∗)r)
∗ =

2d∗ ⊗ (r∗)∗ =

2(
1

2
v ⊗ r)∗ ⊗ r =

(v ⊗ r)∗ ⊗ r =

r∗ ⊗ v∗ ⊗ r =

− rot (r∗, v)

Thus, to find the conjugate translation, we rotate v by r∗

and negate.

D. Derivatives

The transform chaining in (105) is not linear, so we cannot
apply the product rule. Instead, we directly differentiate (105):

d

dt

(
Si

r1
v1

⊗ Si

r2
v2

) =

Si

 ṙ1 ⊗ r2 + r1 ⊗ ṙ2
v̇1 + q̇1 ⊗ v2 ⊗ q∗1 + q1 ⊗ v̇2 ⊗ q∗1 + q1 ⊗ v2 ⊗ q̇∗1

(107)

VI. MATRICES AND EUCLIDEAN TRANSFORMS

A. Rotation Matrix
Using the matrix expansions of quaternion multipication, we

can rewrite the quaternion rotation operator as a single matrix
multiply:

q ⊗ v ⊗ q∗ = QLv⃗ ⊗ q∗ = (Q
∗
)RQLv⃗ = Rv⃗ =−q2z − q2y + q2x + q2w 2qxqy − 2qzqw 2qxqz + 2qyqw

2qzqw + 2qxqy −q2z + q2y − q2x + q2w 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw q2z − q2y − q2x + q2w

 v (108)

The matrix R has geometric significance as well. The ith
column of a R is the ith axis of the child frame in the parent
frames coordinates.

B. Transformation Matrix

T =

[
R v
0 1

]
(109)

C. Transforming Points

[
p′

1

]
= Tp⃗ =

[
TRp⃗+Tv

1

]
(110)

D. Chaining Transforms

C = AB =

[
RARB (RAvB + vA)

0 1

]
(111)
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GLOSSARY

axis-angle
Rotation representation (û, θ), where û is a unit
vector representing an axis of rotation and θ is an
angle to rotate about û. 5

dual number
Number with dual element ε, where ε2 = 0. 5

pure quaternion
A quaternion with zero scalar part. 3, 4

rotation vector
Scaled form of the axis-angle representation, v = θû.
5

scalar
The real part of the quaternion, i.e., the w element.
2, 3

SIMD
Single Instruction Multiple Data. Type of CPU in-
structions which perform multiple computations with
a single instruction, such as element-wise addition or
multiplication of several values. 2, 5

unit quaternion
A quaternion with norm of one. 3, 4

vector
The imaginary part of the quaternion, i.e., the x, y,
and z elements. 2, 3

APPENDIX A
HISTORY

Quaternions were invented in the mid-nineteenth century
by William Rowan Hamilton, who spent the rest of his life
exploring their properties. They quickly found use among
physicists; Maxwell’s equations were originally formulated
using quaternions.

Around the turn of the twentieth century, Josiah Gibbs
published his Vector Analysis, presented as a simplification
over quaternions. The chief distinction was the invention of
the dot and cross product operators, splitting quaternion mul-
tiplication into two separate operations. Eventually, Gibbs’s
notation overtook quaternions as the representation of choice
among physicists and engineers.

Though quaternions may have lost the overall popularity
contest to Gibbs’s vector analysis, their useful numerical
properties mean quaternions still have some role to play.

APPENDIX B
DERIVATION OF QUATERNION MULTIPLICATION

First, the basis elements axiom:

i2 = j2 = k 2 = ijk = −1
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Derivation of Quaternion Multiplication

A. Derivation of Quaternion Basis Equalities

ijk = −1
ijkk = −k
−ij = −k

ij = k
iij = ik
−j = ik
−jj = jik
1 = jik
k = jikk
k = −ji
ki = −jii
ki = j

jki = jj
jki = −1

jkii = −i
jk = i

jkk = ik
−j = ik
−jj = ikj
1 = ikj
i = iikj
i = −kj

B. Derivation of Quaternion Multiplication

1) Multiply the two quaternions:

p⊗ q = (pw + pxi + py j + pzk )(qw + qxi + qy j + qzk )

2) Distribute terms of q1 over terms of q2:

=⇒ pw(qw + qxi + qy j + qzk )+
pxi(qw + qxi + qy j + qzk )+
py j(qw + qxi + qy j + qzk )+
pzk (qw + qxi + qy j + qzk )

3) Distribute again:

=⇒ pwqw + pwqxi + pwqy j + pwqzk +

pxqwi + pxqxi2 + pxqy ij + pxqz ik +

pyqw j + pyqxji + pyqy j2 + pyqz jk +

pzqwk + pzqxki + pzqykj + pzqzk 2

4) Simplify basis elements again:

=⇒ pwqw + pwqxi + pwqy j + pwqzk +
pxqwi − pxqx + pxqyk − pxqz j+
pyqw j − pyqxk − pyqy + pyqz i+
pzqwk + pzqxj − pzqy i − pzqz

5) Combine terms by basis element:

=⇒ (pwqx + pxqw + pyqz − pzqy)i+
(pwqy − pxqz + pyqw + pzqx)j+
(pwqz + pxqy − pyqx + pzqw)k +
(pwqw − pxqx − pyqy − pzqz)

6) Reorder the terms:

=⇒ (pyqz − pzqy + pwqx + qwpx)i+
(pzqx − pxqz + pwqy + qwpy)j+
(pxqy − pyqx + pwqz + qwpz)k +
(pwqw − pxqx − pyqy − pzqz)

=

(
pv × qv + pwqv + qvpv

pwqw − pv · qv

)
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