Quaternion Computation

Neil Dantam
ntd@gatech.edu
Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA

Work in Progress - Updated 2014-10-01.

Abstract

Quaternions are a useful representation for orientation, and dual quaternions extend the representation to handle translations as well. This report discusses computations that can be performed using quaternions. To accurately compute results near singularities, we provide Taylor series approximations which can be efficiently computed to within machine precision.

Contents

I Introduction 1

I-A Notation 2
II Quaternions 2
II-A Representation 2
II-B Multiplication 2
$\begin{array}{ll}\text { II-B1 Cross and dot product defi- } \\ & \text { nition }\end{array}$
II-B2 Matrix definition 2
II-B3 Properties 3
II-B4 Pure Multiplication 3
II-C Norm 3
II-D Conjugate 3
II-E Inverse 3
II-F Exponential 3
II-G Logarithm 3
II-H Power 4
II-I Pure Exponential Derivative 4
II-J Unit Logarithm Derivative 4
II-K Unit Quaternion Angle 4
II-L Product Rule 4
IIII Representing Orientation 4
III-A Rotating a vector 4
III-B Chaining rotations 5
III-C Angular Derivatives 5
III-D Axis-Angle 5
III-E Spherical Linear Interpolation 5
III-F Integration 5
III-G Finite Difference 5
IV Dual Quaternions and Euclidean Transforms 5
IV-A Dual Numbers 6
IV-B Representation 6
IV-C Construction 6
IV-D Multiplication 6
IV-E Matrix Form 6
IV-F Conjugate 6
IV-G Exponential 6
IV-H Logarithm 6
IV-I Chaining Transforms 7
IV-J Transforming a point 7
IV-K Derivatives 7
IV-K1 Product Rule 7
IV-K2 Angular Velocity 7
IV-K3 Translational Velocity 7
IV-L Integration 7
V Implicit Dual Quaternions 7
V-A Chaining transforms 7
V-B Transforming points 7
V-C Conjugate 8
V-D Derivatives 8
VI Matrices and Euclidean Transforms 8
VI-A Rotation Matrix 8
VI-B Transformation Matrix 8
VI-C Transforming Points 8
VI-D Chaining Transforms 8
References 8
Appendix A: History 8
Appendix B: Derivation of Quaternion Multiplication 8
B-A Derivation of Quaternion Basis Equalities 9
B-B Derivation of Quaternion Multiplication 9

I. Introduction

Quaternions are a convenient representation for spatial motion that provides some computational advantages over other methods.

The straightforward definitions of many quaternion quantities, particularly exponentials, logarithms, and derivatives, contain singularities where a denominator goes to zero. We can avoid computational problems at these points by computing key factors near the singularity using a Taylor series, though this may require some careful rearrangement of terms to identify suitable factors and series.
A Taylor series evaluated near point a is:

$$
\begin{array}{r}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+ \\
\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\ldots \tag{1}
\end{array}
$$

To evaluate the infinite series to machine precision, we only need to compute up the term below floating point round-off.

The resulting approximation is a polynomial which can be efficiently evaluated using Horner's Rule, Algorithm 1. The coefficients are the terms $\frac{f(n)(a)}{n!}$ and the indeterminate variable is $x-a$. Note than many Taylor series have zero coefficents for the odd or even terms. We can produce a more compact Horner polynomial by omitting the zero coefficients, using $(x-a)^{2}$ as the indeterminate variable, and perhaps multiplying the whole result by $(x-a)$.

```
Algorithm 1: Horner's Rule
    Input: \(b_{0}, b_{1}, \ldots b_{n}\) : Coefficients
    Input: \(z\) : Indeterminate Variable
    Output: \(y\) : Result
    \(y \leftarrow b_{n}\)
    \(y \leftarrow b_{n-1}+z y\)
    \(y \leftarrow b_{n-2}+z y\)
    ...
    \(y \leftarrow b_{0}+z y\)
```


A. Notation

We adopt the following abbreviations to condense notation:

- Quaternions are typeset as q.
- Dual Quaternions are typeset as \mathcal{S}.
- Vectors are typeset as \vec{x}.
- Matrices are typeset as A.
- Time derivatives of variable x are given as \dot{x}.
- Sines and cosines are abbreviated as s and c.

II. Quaternions

Quaternions are an extension of the complex numbers, using basis elements i, j, and k defined as:

$$
\begin{equation*}
i^{2}=j^{2}=\kappa^{2}=i j k=-1 \tag{2}
\end{equation*}
$$

From (2), it follows:

$$
\begin{array}{r}
j k=-k j=i \\
k i=-i k=j \\
i j=-j i=k \tag{5}
\end{array}
$$

A quaternion, then, is:

$$
\begin{equation*}
q=w+x i+y j+z k \tag{6}
\end{equation*}
$$

Algebraic Quaternion Properties

A. Representation

We represent a quaternion as a 4-tuple of real numbers:

$$
\begin{align*}
q & =w+x i+y j+z \kappa \\
& =(x y z w) \\
& =\mathcal{H}\left(q_{v}, w\right) \tag{7}
\end{align*}
$$

Historically, q_{v} is called the vector part of the quaternion and q_{w} the scalar part.

It is convenient to define quaternion operations in terms of vector and matrix operations, so we also the whole quaternion as a column vector. This also provides an in-memory storage representation.

$$
\begin{array}{r}
\vec{q}=\left[\begin{array}{lll}
x & y & z
\end{array}\right]^{T} \\
\vec{q}_{v}=\left[\begin{array}{lll}
x & y & z
\end{array}\right]^{T} \tag{9}
\end{array}
$$

A alternate convention stores terms in $w x y z$ order, so when using different software packages, it is sometimes necessary to convert between orderings.

B. Multiplication

From the definition of the basis elements (2), we obtain a formula for quaternion multiplication. See section B for the detailed derivation.

1) Cross and dot product definition: We define quaternion multiplication in terms of cross products and dot products of its elements:

$$
\begin{equation*}
q \otimes p=\binom{\vec{q}_{v} \times \vec{p}_{v}+q_{w} \vec{p}_{v}+p_{w} \vec{q}_{v}}{q_{w} p_{w}-\vec{q}_{v} \cdot \vec{p}_{v}} \tag{10}
\end{equation*}
$$

2) Matrix definition: Expanding the above terms, we can express quaternion multiplication as matrix multiplication:

$$
\begin{gather*}
\mathbf{Q}_{\mathbf{L}} \vec{p}=\left[\begin{array}{cccc}
q_{w} & -q_{z} & q_{y} & q_{x} \\
q_{z} & q_{w} & -q_{x} & q_{y} \\
-q_{y} & q_{x} & q_{w} & q_{z} \\
-q_{x} & -q_{y} & -q_{z} & q_{w}
\end{array}\right] \vec{p}= \\
\mathbf{P}_{\mathbf{R}} \vec{q}=\left[\begin{array}{cccc}
p_{w} & p_{z} & -p_{y} & p_{x} \\
-p_{z} & p_{w} & p_{x} & p_{y} \\
p_{y} & -p_{x} & p_{w} & p_{z} \\
-p_{x} & -p_{y} & -p_{z} & p_{w}
\end{array}\right] \vec{q}= \\
{\left[\begin{array}{c}
q_{x} p_{w}+q_{y} p_{z}+q_{w} p_{x}-q_{z} p_{y} \\
q_{z} p_{x}+q_{w} p_{y}+q_{y} p_{w}-q_{x} p_{z} \\
q_{w} p_{z}+q_{z} p_{w}+q_{x} p_{y}-q_{y} p_{x} \\
-\left(q_{y} p_{y}+q_{x} p_{x}+q_{z} p_{z}-q_{w} p_{w}\right.
\end{array}\right]} \tag{11}
\end{gather*}
$$

This matrix form is more suitable for efficient implementation computation using SIMD instructions.
3) Properties: Quaternion multiplication is associative and distributive, but it is not commutative.
4) Pure Multiplication: When multiplying by a pure quaternion, i.e., zero scalar part, we can simplify:

$$
\begin{gather*}
q \otimes(v, 0)=\left[\begin{array}{ccc}
q_{w} & -q_{z} & q_{y} \\
q_{z} & q_{w} & -q_{x} \\
-q_{y} & q_{x} & q_{w} \\
-q_{x} & -q_{y} & -q_{z}
\end{array}\right] v= \\
{\left[\begin{array}{c}
q_{y} v_{z} \\
q_{z} v_{x} \\
q_{x} v_{y} \\
-q_{x} v_{x}
\end{array}\right]-\left[\begin{array}{c}
q_{z} v_{y} \\
q_{x} v_{z} \\
q_{y} v_{x} \\
q_{y} v_{y}
\end{array}\right]+\left[\begin{array}{c}
q_{w} v_{x} \\
q_{w} v_{y} \\
q_{w} v_{z} \\
-q_{z} v_{z}
\end{array}\right]} \tag{12}\\
(v, 0) \otimes q_{1}=\left[\begin{array}{ccc}
q_{w} & q_{z} & -q_{y} \\
-q_{z} & q_{w} & q_{x} \\
q_{y} & -q_{x} & q_{w} \\
-q_{x} & -q_{y} & -q_{z}
\end{array}\right] v= \\
(u, 0) \otimes(v, 0)=\left[\begin{array}{c}
v_{y} q_{z} \\
v_{z} q_{x} \\
v_{x} q_{y} \\
-v_{x} q_{x}
\end{array}\right]-\left[\begin{array}{c}
v_{z} q_{y} \\
v_{x} q_{z} \\
v_{y} q_{x} \\
v_{y} q_{y}
\end{array}\right]+\left[\begin{array}{c}
v_{x} q_{w} \\
v_{y} q_{w} \\
v_{z} q_{w} \\
-v_{z} q_{z}
\end{array}\right] \tag{13}\\
{\left[\begin{array}{c}
u_{y} v_{z}-u_{z} v_{y} \\
u_{z} v_{x}-u_{x} v_{z} \\
u_{x} v_{y}-u_{y} v_{x} \\
-u_{x} v_{x}-u_{y} v_{y}-u_{z} v_{z}
\end{array}\right]=\left[\begin{array}{c}
u \times v \\
-u \cdot v
\end{array}\right]} \tag{14}
\end{gather*}
$$

Thus, the case of multiplying two pure quaternions simplifies to the commonly used cross (\times) and $\operatorname{dot}(\cdot)$ products.
C. Norm

$$
\begin{equation*}
|q|=\sqrt{\vec{q} \cdot \vec{q}} \tag{15}
\end{equation*}
$$

A unit quaternion has norm of one.

D. Conjugate

$$
\begin{equation*}
q^{*}=\mathcal{H}\left(-q_{v}, q_{w}\right) \tag{16}
\end{equation*}
$$

E. Inverse

$$
\begin{equation*}
q^{-1}=\frac{q^{*}}{\vec{q} \cdot \vec{q}} \tag{17}
\end{equation*}
$$

Note that for unit quaternions, the inverse is equal to the conjugate.

F. Exponential

The exponential shows the relationship between quaternions and complex numbers. Recall Euler's formula for complex numbers:

$$
\begin{equation*}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \tag{18}
\end{equation*}
$$

which relates the exponential function with angles in the complex plane. Similarly for quaternions, we can consider the angle between the real and imaginary parts, Figure 1, yielding

Fig. 1. Imaginary Plane for Quaternions
some useful trigonometric ratios for analyzing quaternion functions:

$$
\begin{array}{r}
\phi=\operatorname{atan} 2\left(\left|q_{v}\right|, q_{w}\right) \\
\sin (\phi)=\frac{\left|q_{v}\right|}{|q|} \\
\cos (\phi)=\frac{q_{w}}{|q|} \tag{21}
\end{array}
$$

The quaternion exponential is:

$$
\begin{equation*}
e^{q}=e^{q_{w}} \mathcal{H}\left(q_{v} \frac{\sin \left(\left|q_{v}\right|\right)}{\left|q_{v}\right|}, \cos \left(\left|q_{v}\right|\right)\right) \tag{22}
\end{equation*}
$$

When $\left|q_{v}\right|$ approaches zero, we can use the Taylor series approximation:

$$
\begin{equation*}
\frac{\sin (\theta)}{\theta}=1-\frac{\theta^{2}}{6}+\frac{\theta^{4}}{120}-\frac{\theta^{6}}{5040}+\ldots \tag{23}
\end{equation*}
$$

For a pure quaternion, the exponential simplifies to:

$$
q_{w}=0 \Longrightarrow\left\{\begin{array}{l}
e^{q}=\mathcal{H}\left(q_{v} \frac{\sin \left(\left|q_{v}\right|\right)}{\left|q_{v}\right|}, \cos \left(\left|q_{v}\right|\right)\right) \tag{24}\\
\left|e^{q}\right|=1
\end{array}\right.
$$

G. Logarithm

To compute the logarithm, first consider the angle between the vector and scalar parts of the quaternion.

$$
\begin{equation*}
\phi=\cos ^{-1}\left(\frac{q_{w}}{|q|}\right)=\sin ^{-1}\left(\frac{\left|q_{v}\right|}{|q|}\right)=\operatorname{atan} 2\left(\left|q_{v}\right|, q_{w}\right) \tag{25}
\end{equation*}
$$

The atan 2 form to compute ϕ is generally best for numerical stability.

$$
\begin{equation*}
\ln q=\mathcal{H}\left(\frac{\phi}{\left|q_{v}\right|} q_{v}, \ln (|q|)\right) \tag{26}
\end{equation*}
$$

When $\left|q_{v}\right|$ approaches zero, we can compute $\frac{\phi}{\left|q_{v}\right|}$ as follows:

$$
\begin{equation*}
\frac{\phi}{\left|q_{v}\right|}=\frac{\frac{\phi}{|q|}}{\frac{\left|q_{v}\right|}{|q|}}=\frac{\frac{\phi}{|q|}}{\sin (\phi)}=\frac{\frac{\phi}{\sin (\phi)}}{|q|} \tag{27}
\end{equation*}
$$

Then, $\frac{\phi}{\sin (\phi)}$ can be approximated by Taylor series:

$$
\begin{equation*}
\frac{\theta}{\sin (\theta)}=1+\frac{\theta^{2}}{6}+\frac{7 \theta^{4}}{360}+\frac{31 \theta^{6}}{15120}+\ldots \tag{28}
\end{equation*}
$$

For a unit quaternion, the logarithm simplifies to:

$$
\begin{equation*}
|q|=1 \Longrightarrow \ln (q)=\mathcal{H}\left(\frac{\phi}{\sin (\phi)} q_{v}, 0\right) \tag{29}
\end{equation*}
$$

H. Power

$$
\begin{equation*}
q^{t}=e^{t \ln q} \tag{30}
\end{equation*}
$$

I. Pure Exponential Derivative

Becase quaternion multiplication is not commutative, the chain rule does not apply to the quaternion exponential derivative:

$$
\begin{equation*}
\frac{d \exp (f(q))}{d t} \neq \frac{d f(q)}{d t} \otimes \exp (f(q)) \tag{31}
\end{equation*}
$$

The derivative of the exponential for a pure quaternion is:

$$
\begin{array}{r}
\phi=\left|q_{v}\right|=\sqrt{q_{v} \cdot q_{v}} \\
\dot{\phi}=\frac{d\left|q_{v}\right|}{d t}=\frac{q_{v} \cdot \dot{q}_{v}}{\phi} \\
e^{q}=\mathcal{H}\left(\frac{\sin (\phi)}{\phi} q_{v}, \cos (\phi)\right) \\
\left(\frac{d e^{q}}{d t}\right)_{w}=-\sin (\phi) \dot{\phi}=-\left(q_{v} \cdot \dot{q}_{v}\right) \frac{\sin (\phi)}{\phi} \\
\left(\frac{d e^{q}}{d t}\right)_{v}=\frac{s}{\phi} \dot{q}_{v}+\left(\frac{\dot{\phi} c}{\phi}-\frac{\dot{\phi} s}{\phi^{2}}\right) q_{v}= \\
\frac{s}{\phi} \dot{q}_{v}+\left(\frac{c}{\phi^{2}}-\frac{s}{\phi^{3}}\right)\left(q_{v} \cdot \dot{q}_{v}\right) q_{v}= \\
\frac{s}{\phi} \dot{q}_{v}+\left(\frac{c-\frac{s}{\phi}}{\phi^{2}}\right)\left(q_{v} \cdot \dot{q}_{v}\right) q_{v} \tag{36}
\end{array}
$$

Then, we handle the singularity for $\phi=0$ using (23) and the following:

$$
\begin{equation*}
\frac{c}{\phi^{2}}-\frac{s}{\phi^{3}}=-\frac{1}{3}+\frac{\phi^{2}}{30}-\frac{\phi^{4}}{840}+\frac{\phi^{6}}{45360}+\ldots \tag{37}
\end{equation*}
$$

J. Unit Logarithm Derivative

The derivative of the unit quaternion logarithm is:

$$
\begin{align*}
\ln q & =\frac{\phi}{\sin (\phi)} q_{v} \\
\frac{d \ln q}{d t} & =\frac{d \frac{\phi}{\sin (\phi)}}{d t} q_{v}+\frac{\phi}{\sin (\phi)} \dot{q}_{v} \tag{38}
\end{align*}
$$

where we compute $\frac{d \frac{\phi}{\sin (\phi)}}{d t} q_{v}$ as follows:

$$
\begin{align*}
\dot{\phi} & =\frac{d \cos ^{-1}(w)}{d t}=\frac{\dot{w}}{\sin (\phi)} \\
\frac{d \frac{\phi}{\sin (\phi)}}{d t} & =\frac{\dot{\phi}}{\sin (\phi)}-\frac{\phi \dot{\phi} \cos (\phi)}{\sin ^{2}(\phi)} \\
& =\dot{w}\left(-\frac{1}{\sin ^{2}(\phi)}+\frac{\phi \cos (\phi)}{\sin ^{3}(\phi)}\right) \tag{39}
\end{align*}
$$

Representation	Storage
Quaternion	4
Axis-Angle	4
Rotation Vector	3
Euler Angles	3
Rotation Matrix	9
TABLE II	

Storage Requirements for Orientation Representations

Representation	Chain	Rotate Point
Quaternion	16 multiply, 12 add	15 multiply, 15 add
Rotation Matrix	27 multiply, 18 add	9 multiply, 6 add

TABLE III
Computational Requirements for Orientation Representations

Equations (38) and (39) have a singularity at $\phi=0$. We can handle (38) with (28) and (39) with the following Taylor series:

$$
\begin{equation*}
-\frac{1}{\sin ^{2}(\phi)}+\frac{\phi \cos (\phi)}{\sin ^{3}(\phi)}=-\frac{1}{3}-\frac{2}{15} \phi^{2}-\frac{2}{63} \phi^{4} \ldots \tag{40}
\end{equation*}
$$

Alternatively, one could also use the Jacobian $\frac{\partial \ln q}{\partial q}=$

$$
\left[\begin{array}{cccc}
\frac{\phi}{\sin (\phi)}-\frac{\phi x^{2}}{\sin ^{3}(\phi)} & -\frac{\phi x y}{\sin ^{3}(\phi)} & -\frac{\phi x z}{\sin ^{3}(\phi)} & -\frac{x}{\sin ^{2}(\phi)} \tag{41}\\
-\frac{\phi x y}{\sin ^{3}(\phi)} & \frac{\phi}{\sin (\phi)}-\frac{\phi y}{\sin ^{3}(\phi)} & -\frac{\phi y z}{\sin ^{3}(\phi)} & -\frac{y}{\sin ^{2}(\phi)} \\
-\frac{\phi x z}{\sin ^{3}(\phi)} & -\frac{\phi y z}{\sin ^{3}(\phi)} & \frac{\phi}{\sin (\phi)}-\frac{\phi z^{2}}{\sin ^{3}(\phi)} & -\frac{z}{\sin ^{2}(\phi)}
\end{array}\right]_{(41}
$$

K. Unit Quaternion Angle

We can compute the angle between the vector forms of two unit quaternions as follows:

$$
\begin{align*}
& \angle\left(\vec{q}_{1}, \vec{q}_{2}\right)=\cos ^{-1}\left(\vec{q}_{1} \cdot \vec{q}_{2}\right)= \\
& 2 \operatorname{atan} 2\left(\left|q_{1}-q_{2}\right|,\left|q_{1}+q_{2}\right|\right) \tag{42}
\end{align*}
$$

The atan2 form is more accurate [1].

L. Product Rule

Because quaternion multiplication is a linear operation (see section B), the product rule applies:

$$
\begin{equation*}
\frac{d}{d t}\left(q_{1} \otimes q_{2}\right)=\dot{q}_{1} \otimes q_{2}+q_{1} \otimes \dot{q}_{2} \tag{43}
\end{equation*}
$$

III. Representing Orientation

A unit quaternion $(|q|=1)$ can represent an angular orientation.

A. Rotating a vector

We can rotate point v by unit quaternion q by computing $v^{\prime}=\operatorname{rot}(q, v)=q \otimes v \otimes q^{*}$. Note that v is augmented with 0 in it's w position to perform the quaternion multiplication operation. Given this 0 value, the computation can be simplified to the following:

$$
\begin{array}{r}
v^{\prime}=\operatorname{rot}(q, v)= \\
q \otimes v \otimes q^{*}=2 \vec{q}_{v} \times\left(\vec{q}_{v} \times v+q_{w} v\right)+v \tag{44}
\end{array}
$$

which we can rewrite in a more SIMD-friendly form as:

$$
\begin{array}{r}
a=q_{v} \times v+q_{w} v \\
b=q_{v} \times a \\
v^{\prime}=b+b+v \tag{45}
\end{array}
$$

B. Chaining rotations

Rotations q_{1} and q_{2} are chained by multiplying the two quaternions: $q_{1} \otimes q_{2}$.

C. Angular Derivatives

Rotational velocity ω is related to the quaternion derivative as follows:

$$
\begin{align*}
\dot{q} & =\frac{1}{2} \omega \otimes q \tag{46}\\
\omega & =2 \dot{q} \otimes q^{*} \tag{47}
\end{align*}
$$

Rotational acceleration $\dot{\omega}$ is related to the quaternion derivative as follows:

$$
\begin{align*}
\ddot{q} & =\frac{1}{2}(\dot{\omega} \otimes q+\omega \otimes \dot{q}) \tag{48}\\
& =\frac{1}{2} \dot{\omega} \quad=2\left(\ddot{q} \otimes q^{*}+\dot{q} \otimes \dot{q}^{*}\right) \tag{49}
\end{align*}
$$

D. Axis-Angle

The axis-angle form, $a=(\hat{u}, \theta)$ represents rotation by angle θ around unit axis \hat{u}. We can also normalize the representation by scaling the axis by the angle $v=\theta \hat{u}$, which is sometimes called the rotation vector form.

Rotation vectors are related to unit quaternions through the exponential and logarithm.

$$
\begin{gather*}
q=\mathcal{H}\left(\hat{u} \sin \left(\frac{\theta}{2}\right), \cos \left(\frac{\theta}{2}\right)\right)=e^{\frac{\theta}{2} \hat{u}}= \\
\mathcal{H}\left(\frac{v}{|v|} \sin \left(\frac{|v|}{2}\right), \cos \left(\frac{|v|}{2}\right)\right)=e^{\frac{v}{2}} \tag{50}\\
\theta=2 \cos ^{-1}\left(q_{w}\right)=2 \tan ^{-1}\left(\left|q_{v}\right|, q_{w}\right)=2|\ln q| \tag{51}\\
\hat{u}= \begin{cases}\theta \neq 0 & \frac{q_{v}}{\sin \left(\frac{\theta}{2}\right)} \\
=\frac{\ln q}{|\ln q|} \\
\theta=0 & 0 \\
v=2 \ln q\end{cases} \tag{52}
\end{gather*}
$$

The rotation vector and quaternion derivatives are related as follows, substituting $y=\frac{v}{2}, \dot{y}=\frac{\dot{v}}{2}$, and $\phi=|y|$:

$$
\begin{array}{r}
\dot{\phi}=\frac{y \cdot \dot{y}}{\phi} \\
\dot{q}_{w}=-\dot{\phi} \sin (\phi)=(y \cdot \dot{y}) \frac{\sin (\phi)}{\phi} \\
\dot{q}_{v}=\frac{\sin (\phi)}{\phi} \dot{y}-\frac{\dot{\phi} \sin (\phi)}{\phi^{2}} y+\frac{\dot{\phi} \cos (\phi)}{\phi} y= \\
\frac{\sin (\phi)}{\phi} \dot{y}+\left(\frac{\cos (\phi)-\frac{\sin (\phi)}{\phi}}{\phi^{2}}\right)(\dot{y} \cdot y) y \tag{56}
\end{array}
$$

When ϕ goes to zero, we can approximate $\frac{\sin (\phi)}{\phi}$ with the series in (23) and the other singular factor as:

$$
\begin{equation*}
\frac{\cos (\phi)-\frac{\sin (\phi)}{\phi}}{\phi^{2}}=-\frac{1}{3}+\frac{\phi^{2}}{30}-\frac{\phi^{4}}{840}+\frac{\phi^{6}}{45360}+\ldots \tag{57}
\end{equation*}
$$

E. Spherical Linear Interpolation

Spherical Linear Interpolation, SLERP, interpolates between two quaternions. SLERP can be understood geometrically by considering a relative orientation in the axis-angle form. Consider the relative quaternion q_{r} between two endpoints, $q_{1} \otimes q_{r}=q_{2}$, given in axis angle form $\left(\hat{u}_{r}, \theta_{r}\right)$. To interpolate between q_{1} and q_{2}, we apply the $q(\tau)=q_{1} \otimes q_{s}(\tau)$, where q_{s} is a rotation about \hat{u}_{r} with angle θ_{s} varying from 0 to θ_{r} as τ varies from 0 to 1 . We can compute the rotation vector form of q_{s} from that of q_{r} as $v_{s}=\tau v_{r}$.

Composing definitions for quaternion and rotation vector conversion and quaternion exponents:

$$
\begin{equation*}
q(\tau)=q_{1} \otimes \exp \left(\tau \ln \left(q_{1}^{*} \otimes q_{2}\right)\right)=q_{1} \otimes\left(q_{1}^{*} \otimes q_{2}\right)^{t} \tag{58}
\end{equation*}
$$

To interpolate in the shorter direction, e.g., $-\frac{\pi}{2}$ vs. $+\frac{3 \pi}{2}$, scale $q_{1}{ }^{*} \otimes q_{2}$ so it has a positive scalar element.

A more efficient computation for SLERP [2] is:

$$
\left.\begin{array}{r}
\phi=\left|\angle\left(\vec{q}_{1}, \vec{q}_{2}\right)\right| \\
\theta=\left\{\begin{array}{c}
\phi>\frac{\pi}{2} \\
\pi-\phi \\
\phi \leq \frac{\pi}{2}
\end{array} \quad \phi\right.
\end{array}\right\} \begin{array}{r}
q(\tau)= \begin{cases}\phi>\frac{\pi}{2} & \frac{\sin (\theta-\tau \theta)}{\sin (\theta)} q_{1}-\frac{\sin (\tau \theta)}{\sin (\theta)} q_{2} \\
\phi \leq \frac{\pi}{2} & \frac{\sin (\theta-\tau \theta)}{\sin (\theta)} q_{1}+\frac{\sin (\tau \theta)}{\sin (\theta)} q_{2}\end{cases}
\end{array}
$$

F. Integration

Euler or Runge-Kutta integration of quaternion derivatives would not preserve the unit constraint, introducing error. We can instead integrate a constant rotational velocity with:

$$
\begin{align*}
q_{1} & =\exp \left(\frac{\omega \Delta t}{2}\right) \otimes q_{0} \tag{62}\\
& =\exp \left(\Delta t \dot{q} \otimes q_{0}^{*}\right) \otimes q_{0} \tag{63}
\end{align*}
$$

G. Finite Difference

Based on (62), we can compute a finite difference velocity ω_{Δ} between two orientations:

$$
\begin{align*}
\omega_{\Delta} & =2 \ln \left(q_{1} \otimes q_{0}^{*}\right) \tag{64}\\
\dot{q}_{\Delta} & =\ln \left(q_{1} \otimes q_{0}^{*}\right) \otimes q_{0} \tag{65}
\end{align*}
$$

IV. Dual Quaternions and Euclidean Transforms

Dual quaternions are convenient for representing Euclidean transformations. Formally, dual quaternions are the generalization of quaternions to dual numbers.

A. Dual Numbers

Dual numbers are similar to complex numbers, but the square of the dual element ε is zero:

$$
\begin{array}{r}
\tilde{z}=a+b \varepsilon \\
\varepsilon \neq 0 \\
\varepsilon^{2}=0 \tag{68}
\end{array}
$$

If we consider the Taylor series of $f(a+b \varepsilon)$ at point a, we obtain the following property:

$$
\begin{equation*}
f(a+b \varepsilon)=f(a)+b f^{\prime}(a) \varepsilon \tag{69}
\end{equation*}
$$

This lets us define a few functions for dual numbers:

$$
\begin{array}{r}
\cos (a+b \varepsilon)=\cos (a)-\sin (a) b \varepsilon \\
\sin (a+b \varepsilon)=\sin (a)+\cos (a) b \varepsilon \\
\exp (a+b \varepsilon)=e^{a}+e^{a} b \varepsilon \\
\sqrt{a+b \varepsilon}=\sqrt{a}+\frac{b}{2 \sqrt{a}} \varepsilon \tag{73}
\end{array}
$$

B. Representation

Dual quaternions are quaternions with dual numbers for elements.

$$
\begin{align*}
& \mathcal{S}= \\
& \tilde{x} i+\tilde{y} j+\tilde{z} \kappa+\tilde{w}= \\
&\left(r_{x}+d_{x} \varepsilon\right) i+\left(r_{y}+d_{y} \varepsilon\right) j+\left(r_{z}+d_{z} \varepsilon\right) \kappa+\left(r_{w}+d_{w} \varepsilon\right)= \\
&\left(r_{x} i+r_{y} j+r_{z} \kappa+r_{w}\right)+\left(d_{x} i+d_{y} j+d_{z} \kappa+d_{w}\right) \varepsilon= \\
& r+d \varepsilon \tag{74}
\end{align*}
$$

For computation, it is convenient to represent dual quaternion S factored into the separate real and dual parts r and d :

$$
\begin{align*}
\mathcal{S} & =r+d \varepsilon \\
& =\mathcal{S}(r, d) \tag{75}
\end{align*}
$$

C. Construction

We can produce a dual quaternion for some transformation represented by the rotational quaternion q, and the translation vector v as follows:

$$
\begin{array}{r}
r=q \\
d=\frac{1}{2} v \otimes r \tag{77}
\end{array}
$$

Translation v is augmented with 0 as the scalar element for the quaternion multiply. The real part r represents orientation, and the dual part d represents translation. Note that the real part r will be a unit quaternion while the dual part d has no such restriction.

To extract the translation, we do:

$$
\begin{equation*}
v=2 d \otimes r^{*} \tag{78}
\end{equation*}
$$

D. Multiplication

Multiplication is defined in terms of the standard quaternion multiply, performed over both real and dual parts:

$$
\begin{equation*}
\mathcal{A} \otimes \mathcal{B}=\mathcal{S}\left(a_{r} \otimes b_{r}, \quad a_{r} \otimes b_{d}+a_{d} \otimes b_{r}\right) \tag{79}
\end{equation*}
$$

E. Matrix Form

We can also represent the dual quaternion multiplication as a matrix multiply. Based on (11):

$$
\begin{array}{r}
\mathcal{A} \otimes \mathcal{B}=\binom{a_{r} \otimes b_{r}}{a_{r} \otimes b_{d}+a_{d} \otimes b_{r}}= \\
\mathbf{A}_{\mathbf{L}} \vec{B}=\left[\begin{array}{cc}
\mathbf{A}_{\mathbf{r}, \mathbf{L}} & 0 \\
\mathbf{A}_{\mathbf{d}, \mathbf{L}} & \mathbf{A}_{\mathbf{r}, \mathbf{L}}
\end{array}\right] \vec{B}= \\
\mathbf{B}_{\mathbf{R}} \vec{A}=\left[\begin{array}{cc}
\mathbf{B}_{\mathbf{r}, \mathbf{R}} & 0 \\
\mathbf{B}_{\mathbf{d}, \mathbf{R}} & \mathbf{B}_{\mathbf{r}, \mathbf{R}}
\end{array}\right] \vec{A} \tag{80}
\end{array}
$$

F. Conjugate

$$
\begin{equation*}
\mathcal{S}^{*}=\mathcal{S}\left(s_{r}{ }^{*}, s_{d}{ }^{*}\right) \tag{81}
\end{equation*}
$$

G. Exponential

We derive the dual quaternion exponential by expanding (22) using dual arithmetic:

$$
\begin{array}{r}
\phi=\left|r_{v}\right| \\
k=r_{v} \cdot d_{v} \\
e^{\mathcal{S}}=e^{\tilde{w}} \mathcal{S}\left(\mathcal{H}\left(\frac{s}{\phi} r_{v}, c\right), \mathcal{H}\left(\frac{s}{\phi} d_{v}+\frac{c-\frac{s}{\phi}}{\phi^{2}} k r_{v},-\frac{s}{\phi} k\right)\right) \tag{84}
\end{array}
$$

where $\tilde{w}=r_{w}+d_{w} \varepsilon$.
Then, to handle the singularity at $\phi=0$, we use (23) and:

$$
\begin{equation*}
\frac{\cos (\phi)-\frac{\sin (\phi)}{\phi}}{\phi^{2}}=-\frac{1}{3}+\frac{\phi^{2}}{30}-\frac{\phi^{4}}{840}+\frac{\phi^{6}}{45360}+\ldots \tag{85}
\end{equation*}
$$

H. Logarithm

We derive the dual quaternion logarithm by expanding (26) using dual arithmetic:

$$
\begin{array}{r}
\phi=\operatorname{atan} 2\left(\left|r_{v}\right|, r_{w}\right) \\
k=r_{v} \cdot d_{v} \\
\alpha=\frac{r_{w}-\frac{\phi}{\left|r_{v}\right|}|r|^{2}}{\left|r_{v}\right|^{2}} \\
(\ln S)_{r}=\mathcal{H}\left(\frac{\phi}{\left|r_{v}\right|} r_{v}, \ln |r|\right) \\
(\ln S)_{d}=\mathcal{H}\left(\frac{k \alpha-d_{w}}{|r|^{2}} r_{v}+\frac{\phi}{\left|r_{v}\right|} d_{v}, \frac{k+r_{w} d_{w}}{|r|^{2}}\right) \tag{90}
\end{array}
$$

To handle the singularity at $\left|r_{v}\right|=0$, we apply (27) and (28) to handle $\frac{\phi}{\left|r_{v}\right|}$. Then, we rewrite α as:

$$
\begin{align*}
& \frac{r_{w}-\frac{\phi}{\left|r_{v}\right|}|r|^{2}}{\left|r_{v}\right|^{2}}= \\
& \frac{r_{w}}{\left|r_{v}\right|^{2}}-\frac{\phi|r|^{2}}{\left|r_{v}\right|^{3}}= \\
& \frac{r_{w}|r|^{2}}{\left|r_{v}\right|^{2}|r|^{2}}-\frac{\phi|r|^{3}}{\left|r_{v}\right|^{3}|r|}= \\
& \frac{1}{|r|}\left(\frac{r_{w}}{|r|} \frac{|r|^{2}}{\left|r_{v}\right|^{2}}-\phi \frac{|r|^{3}}{\left|r_{v}\right|^{3}}\right)= \\
& \frac{1}{|r|}\left(\frac{\cos (\phi)}{\sin ^{2}(\phi)}-\frac{\phi}{\sin ^{3}(\phi)}\right) \tag{91}
\end{align*}
$$

This gives the Taylor series:

$$
\begin{equation*}
\frac{c}{s^{2}}-\frac{\phi}{s^{3}}=-\frac{2}{3}-\frac{1}{5} \phi^{2}-\frac{17}{420} \phi^{4}-\frac{29}{4200} \phi^{6}+\ldots \tag{92}
\end{equation*}
$$

I. Chaining Transforms

Transforms are chained by multiplying the dual quaternions.

J. Transforming a point

We can transform a point v by constructing a dual quaternion for translation v and identity rotation, and chaining it onto the transform, then extracting the resulting translation:

$$
\begin{array}{r}
S^{\prime}=\mathcal{S} \otimes \mathcal{S}\left(\mathcal{H}(0,1), \frac{1}{2} v\right) \\
v^{\prime}=2 s_{d}^{\prime} \otimes s_{r}^{\prime *} \tag{94}
\end{array}
$$

This reduces to:

$$
\begin{equation*}
v^{\prime}=\left(2 s_{d}+s_{r} \otimes v\right) \otimes s_{r}^{*} \tag{95}
\end{equation*}
$$

K. Derivatives

1) Product Rule: Because dual quaternion multiplication is a linear operation (see section B), the product rule applies:

$$
\begin{equation*}
\frac{d}{d t}\left(S_{1} \otimes \mathcal{S}_{2}\right)=\dot{S}_{1} \otimes \mathcal{S}_{2}+\mathcal{S}_{1} \otimes \dot{\mathcal{S}}_{2} \tag{96}
\end{equation*}
$$

2) Angular Velocity: Angular velocity computation is identical to the single unit quaternion case:

$$
\begin{align*}
\dot{r} & =\frac{1}{2} \omega \otimes r \tag{97}\\
\omega & =2 \dot{r} \otimes r^{*} \tag{98}
\end{align*}
$$

3) Translational Velocity: We find the equation for the derivative of the dual part by differentiating (77),

$$
\begin{equation*}
\dot{d}=\frac{1}{2}(\dot{v} \otimes r+v \otimes \dot{r}) \tag{99}
\end{equation*}
$$

Translational velocity comes from differentiating (78):

$$
\begin{equation*}
\dot{v}=2\left(\dot{d} \otimes r^{*}+d \otimes(\dot{r})^{*}\right) \tag{100}
\end{equation*}
$$

Representation	Storage
Dual Quaternion	8
Implicit Dual Quaternion	7
Transformation Matrix	12

TABLE IV
Storage Requirements for Transformation Representations

Representation	Chain	Transform
Dual Quaternion	48 multiply, 40 add	28 multiply 28 add
Implicit Dual Quaternion	31 multiply, 30	15 multiply, 18 add
Transformation Matrix	36 multiply, 27 add	9 multiply, 9 add

Computational Requirements for Orientation Representations

L. Integration

To integrate dual quaternions, we first introduce the twist, Ω :

$$
\begin{equation*}
\Omega=\mathcal{S}(\mathcal{H}(\omega, 0), \mathcal{H}(\dot{v}+v \times \omega, 0)) \tag{101}
\end{equation*}
$$

where ω is angular velocity, v is translation, and \dot{v} is translational velocity.

Then, integration of a constant velocity is given by:

$$
\begin{equation*}
S_{1}=\exp \left(\frac{\Omega \Delta t}{2}\right) \otimes S_{0} \tag{102}
\end{equation*}
$$

V. Implicit Dual Quaternions

We can implicitly represent the dual quaternion for a Euclidean transform by storing orientation quaternion r and translation vector v :

$$
\begin{equation*}
E=\mathcal{S}_{\mathrm{i}}(r, v) \tag{103}
\end{equation*}
$$

This form allows more efficient computation for some operations.

A. Chaining transforms

From dual quaternion multiplication (79), we derive the multiplication formula for the implicit form:

$$
\begin{array}{r}
C_{v}=2 C_{d} \otimes C_{r}^{*}= \\
2\left(A_{r} \otimes B_{d}+A_{d} \otimes B_{r}\right) \otimes\left(A_{r} \otimes B_{r}\right)^{*}= \\
2\left(A_{r} \otimes \frac{B_{v} \otimes B_{r}}{2}+\frac{A_{v} \otimes A_{r}}{2} \otimes B_{r}\right) \otimes B_{r}^{*} \otimes A_{r}^{*}= \\
\left(A_{r} \otimes B_{v}+A_{v} \otimes A_{r}\right) \otimes A_{r}^{*}= \\
A_{r} \otimes B_{v} \otimes A_{r}^{*}+A_{v}
\end{array}
$$

This is equivalent to rotating B_{v} by A_{r}, then adding A_{v}. Thus, we chain transforms with:

$$
\begin{array}{r}
C_{r}=A_{r} \otimes B_{r} \\
C_{v}=\operatorname{rot}\left(A_{r}, B_{v}\right)+A_{v} \tag{105}
\end{array}
$$

B. Transforming points

To transform point p, we first rotate it by the given orientation r, then add the translation v

$$
\begin{equation*}
p^{\prime}=\operatorname{rot}(r, p)+v \tag{106}
\end{equation*}
$$

C. Conjugate

From the dual quaternion conjugate (81) for $S=(r, d)$:

$$
\begin{array}{r}
\left(S^{*}\right)_{v}=2\left(S^{*}\right)_{d} \otimes\left(\left(S^{*}\right)_{r}\right)^{*}= \\
2 d^{*} \otimes\left(r^{*}\right)^{*}= \\
2\left(\frac{1}{2} v \otimes r\right)^{*} \otimes r= \\
(v \otimes r)^{*} \otimes r= \\
r^{*} \otimes v^{*} \otimes r= \\
-\operatorname{rot}\left(r^{*}, v\right)
\end{array}
$$

Thus, to find the conjugate translation, we rotate v by r^{*} and negate.

D. Derivatives

The transform chaining in (105) is not linear, so we cannot apply the product rule. Instead, we directly differentiate (105):

$$
\begin{array}{r}
\frac{d}{d t}\left(\mathcal{S}_{\mathrm{i}}\binom{r_{1}}{v_{1}} \otimes \mathcal{S}_{\mathrm{i}}\binom{r_{2}}{v_{2}}\right)= \\
\mathcal{S}_{\mathrm{i}}\binom{\dot{r}_{1} \otimes r_{2}+r_{1} \otimes \dot{r}_{2}}{\dot{v}_{1}+\dot{q}_{1} \otimes v_{2} \otimes q_{1}^{*}+q_{1} \otimes \dot{v}_{2} \otimes q_{1}^{*}+q_{1} \otimes v_{2} \otimes \dot{q}_{1}^{*}} \tag{107}
\end{array}
$$

VI. Matrices and Euclidean Transforms

A. Rotation Matrix

Using the matrix expansions of quaternion multipication, we can rewrite the quaternion rotation operator as a single matrix multiply:

$$
\begin{gathered}
q \otimes v \otimes q^{*}=\mathbf{Q}_{\mathbf{L}} \vec{v} \otimes q^{*}=\left(\mathbf{Q}^{*}\right)_{\mathbf{R}} \mathbf{Q} \mathbf{L} \vec{v}=\mathbf{R} \vec{v}=^{\left[\begin{array}{ccc}
-q_{z}^{2}-q_{y}^{2}+q_{x}^{2}+q_{w}^{2} & 2 q_{x} q_{y}-2 q_{z} q_{w} & 2 q_{x} q_{z}+2 q_{y} q_{w} \\
2 q_{z} q_{w}+2 q_{x} q_{y} & -q_{z}^{2}+q_{y}^{2}-q_{x}^{2}+q_{w}^{2} & 2 q_{y} q_{z}-2 q_{x} q_{w} \\
2 q_{x} q_{z}-2 q_{y} q_{w} & 2 q_{y} q_{z}+2 q_{x} q_{w} & q_{z}^{2}-q_{y}^{2}-q_{x}^{2}+q_{w}^{2}
\end{array}\right] v \quad \text { (108) }}
\end{gathered}
$$

The matrix R has geometric significance as well. The i th column of a R is the i th axis of the child frame in the parent frames coordinates.

B. Transformation Matrix

$$
\mathbf{T}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{v} \tag{109}\\
0 & 1
\end{array}\right]
$$

C. Transforming Points

$$
\left[\begin{array}{c}
p^{\prime} \tag{110}\\
1
\end{array}\right]=\mathbf{T} \vec{p}=\left[\begin{array}{c}
\mathbf{T}_{\mathbf{R}} \vec{p}+\mathbf{T}_{\mathbf{v}} \\
1
\end{array}\right]
$$

D. Chaining Transforms

$$
\mathbf{C}=\mathbf{A B}=\left[\begin{array}{cc}
\mathbf{R}_{\mathbf{A}} \mathbf{R}_{\mathbf{B}} & \left(\mathbf{R}_{\mathbf{A}} \mathbf{v}_{\mathbf{B}}+\mathbf{v}_{\mathbf{A}}\right) \tag{111}\\
0 & 1
\end{array}\right]
$$

REFERENCES

[1] KAhan, W. How futile are mindless assessments of roundoff in floatingpoint computation. Tech. rep., U.C. Berkeley, 2006. http://www.cs. berkeley.edu/ $\sim_{\text {wkahan/Mindless.pdf. }}$
[2] Shoemake, K. Animating rotation with quaternion curves. ACM SIGGRAPH computer graphics 19, 3 (1985), 245-254.

axis-angle

Rotation representation (\hat{u}, θ), where \hat{u} is a unit vector representing an axis of rotation and θ is an angle to rotate about \hat{u}. 5

dual number

Number with dual element ε, where $\varepsilon^{2}=0.5$

pure quaternion

A quaternion with zero scalar part. 3, 4

rotation vector

Scaled form of the axis-angle representation, $v=\theta \hat{u}$. 5
scalar
The real part of the quaternion, i.e., the w element. 2, 3

SIMD

Single Instruction Multiple Data. Type of CPU instructions which perform multiple computations with a single instruction, such as element-wise addition or multiplication of several values. 2, 5

unit quaternion

A quaternion with norm of one. 3, 4
vector
The imaginary part of the quaternion, i.e., the x, y, and z elements. 2, 3

Appendix A History

Quaternions were invented in the mid-nineteenth century by William Rowan Hamilton, who spent the rest of his life exploring their properties. They quickly found use among physicists; Maxwell's equations were originally formulated using quaternions.

Around the turn of the twentieth century, Josiah Gibbs published his Vector Analysis, presented as a simplification over quaternions. The chief distinction was the invention of the dot and cross product operators, splitting quaternion multiplication into two separate operations. Eventually, Gibbs's notation overtook quaternions as the representation of choice among physicists and engineers.
Though quaternions may have lost the overall popularity contest to Gibbs's vector analysis, their useful numerical properties mean quaternions still have some role to play.

Appendix B
 Derivation of Quaternion Multiplication

First, the basis elements axiom:

$$
i^{2}=j^{2}=\kappa^{2}=i j \kappa=-1
$$

A. Derivation of Quaternion Basis Equalities

$$
\begin{aligned}
i j k & =-1 \\
i j k k & =-k \\
-i j & =-k \\
i j & =k \\
i i j & =i k \\
-j & =i k \\
-j j & =j i k \\
1 & =j i k \\
k & =j i k k \\
k & =-j i \\
k i & =-j i i \\
k i & =j \\
j k i & =j j \\
j k i & =-1 \\
j k i i & =-i \\
j k & =i \\
j k k & =i k \\
-j & =i k \\
-j j & =i k j \\
1 & =i k j \\
i & =i i k j \\
i & =-k j
\end{aligned}
$$

B. Derivation of Quaternion Multiplication

1) Multiply the two quaternions:

$$
p \otimes q=\left(p_{w}+p_{x} i+p_{y} j+p_{z} \kappa\right)\left(q_{w}+q_{x} i+q_{y} j+q_{z} \kappa\right)
$$

2) Distribute terms of q_{1} over terms of q_{2} :

$$
\begin{aligned}
\Longrightarrow & p_{w}\left(q_{w}+q_{x} i+q_{y} j+q_{z} \kappa\right)+ \\
& p_{x} i\left(q_{w}+q_{x} i+q_{y} j+q_{z} \kappa\right)+ \\
& p_{y} j\left(q_{w}+q_{x} i+q_{y} j+q_{z} \kappa\right)+ \\
& p_{z} \kappa\left(q_{w}+q_{x} i+q_{y} j+q_{z} \kappa\right)
\end{aligned}
$$

3) Distribute again:

$$
\begin{aligned}
\Longrightarrow & p_{w} q_{w}+p_{w} q_{x} i+p_{w} q_{y} j+p_{w} q_{z} \kappa+ \\
& p_{x} q_{w} i+p_{x} q_{x} i^{2}+p_{x} q_{y} i j+p_{x} q_{z} i \kappa+ \\
& p_{y} q_{w} j+p_{y} q_{x} j i+p_{y} q_{y} j^{2}+p_{y} q_{z} j \kappa+ \\
& p_{z} q_{w} \kappa+p_{z} q_{x} k i+p_{z} q_{y} k j+p_{z} q_{z} \kappa^{2}
\end{aligned}
$$

4) Simplify basis elements again:

$$
\begin{gathered}
\Longrightarrow \\
p_{w} q_{w}+p_{w} q_{x} i+p_{w} q_{y} j+p_{w} q_{z} \kappa+ \\
\\
p_{x} q_{w} i-p_{x} q_{x}+p_{x} q_{y} k-p_{x} q_{z} j+ \\
\\
p_{y} q_{w} j-p_{y} q_{x} \kappa-p_{y} q_{y}+p_{y} q_{z} i+ \\
\\
p_{z} q_{w} \kappa+p_{z} q_{x} j-p_{z} q_{y} i-p_{z} q_{z}
\end{gathered}
$$

5) Combine terms by basis element:

$$
\begin{aligned}
\Longrightarrow & \left(p_{w} q_{x}+p_{x} q_{w}+p_{y} q_{z}-p_{z} q_{y}\right) i+ \\
& \left(p_{w} q_{y}-p_{x} q_{z}+p_{y} q_{w}+p_{z} q_{x}\right) j+ \\
& \left(p_{w} q_{z}+p_{x} q_{y}-p_{y} q_{x}+p_{z} q_{w}\right) k+ \\
& \left(p_{w} q_{w}-p_{x} q_{x}-p_{y} q_{y}-p_{z} q_{z}\right)
\end{aligned}
$$

6) Reorder the terms:

$$
\begin{aligned}
\Longrightarrow & \left(p_{y} q_{z}-p_{z} q_{y}+p_{w} q_{x}+q_{w} p_{x}\right) i+ \\
& \left(p_{z} q_{x}-p_{x} q_{z}+p_{w} q_{y}+q_{w} p_{y}\right) j+ \\
& \left(p_{x} q_{y}-p_{y} q_{x}+p_{w} q_{z}+q_{w} p_{z}\right) \kappa+ \\
& \left(p_{w} q_{w}-p_{x} q_{x}-p_{y} q_{y}-p_{z} q_{z}\right) \\
= & \binom{p_{v} \times q_{v}+p_{w} q_{v}+q_{v} p_{v}}{p_{w} q_{w}-p_{v} \cdot q_{v}}
\end{aligned}
$$

