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Abstract. Modern approaches for robot kinematics employ the product
of exponentials formulation, represented using homogeneous transforma-
tion matrices. Quaternions over dual numbers are an established alter-
native representation; however, their use presents certain challenges: the
dual quaternion exponential and logarithm contain a zero-angle singular-
ity, and many common operations are less efficient using dual quaternions
than with matrices. We present a new derivation of the dual quaternion
exponential and logarithm that removes the singularity, and we show an
implicit representation of dual quaternions offers analytical and empir-
ical efficiency advantages compared to both matrices and explicit dual
quaternions. Analytically, implicit dual quaternions are more compact
and require fewer arithmetic instructions for common operations, includ-
ing chaining and exponentials. Empirically, we demonstrate a 25%-40%
speedup to compute the forward kinematics of multiple robots. This
work offers a practical connection between dual quaternions and modern
exponential coordinates, demonstrating that a quaternion-based approach
provides a more efficient alternative to matrices for robot kinematics.

1 Introduction

Efficient geometric computations are important for robot manipulation, 3D simu-
lation, and other areas that must represent the physical world. The product of
exponentials formulation, represented as homogeneous transformation matrices,
has emerged as the conventional method for robot kinematics [2,14,16]. For pure
rotations, the unit quaternion has recently resurged in popularity, particularly
for applications in graphics and estimation where the efficient interpolation and
normalization of quaternions is especially useful. It is also possible to represent
both rotation and translation by extending the ordinary unit quaternion to
quaternions over dual numbers [18,22]. Such dual quaternions retain the unit
quaternions’ advantages of compactness and efficient normalization; however,
they also present challenges. Common kinematics operations—constructing and
chaining transforms—require more arithmetic instructions using dual quater-
nions than the equivalent transformation matrix computation. Critically, the
dual quaternion exponential contains a small-angle singularity which must be
handled for numerical robustness. We address these challenges and present a
dual-quaternion-based representation with advantages for robot kinematics.
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We present a new derivation of the dual number quaternion exponential

and logarithm that removes the small-angle singularity, and we show that the

implicit representation of a dual quaternion is more computationally-efficient for

robot kinematics than homogeneous transformation matrices. The conventional
representation of exponential coordinates using the homogeneous transformation
matrix provides a baseline for comparison (see Sec. 3). We begin with the
known forms of the ordinary quaternion exponential and logarithm (see Sec. 4.1).
Then, based on dual number arithmetic and quaternion geometry, we derive the
exponential and logarithm for the dual quaternions and rewrite factors to identify
Taylor series that remove the singularities (see Sec. 4.2). We extend this dual
quaternion exponential and logarithm to the implicit representation of a dual
quaternion as an ordinary (rotation) quaternion and a translation vector, which
is more compact and computationally efficient than explicit dual quaternions
(see Sec. 4.3). Next, we present the application of these quaternion forms to
robot kinematics, demonstrating a 25%-40% empirical performance gain over
transformation matrices. Finally, we discuss issues of equivalence and efficiency
between matrix and quaternion representations (see Sec. 6).

All the derived forms presented in this paper are available as open source
software.1

R

I

|h |

w = |h | cosφ

|v| = |h | sinφ
φ

hh = ~v + w

Fig. 1. The quaternion-imaginary-plane,
containing axes for the scalar w and vec-
tor magnitude |v|.

Quaternion-based forms present
both challenges and advantages. A
common challenge raised with quater-
nions is the difficulty of men-
tally visualizing the four-dimensional
space of ordinary quaternions—or
the eight-dimensional space of dual
quaternions—whereas vector and ma-
trix approaches have a direct, 3-
dimensional interpretation. Still, the
planar projection of quaternions (see
Fig. 1) provides some insight into
the relationship between quaternion
components and angles. More impor-
tantly, a growing body of work con-
tinues to demonstrate that ordinary
and dual quaternions offer computa-
tional advantages in a variety of do-

mains [11,15,20]. The results of this paper are in the same vein. We demononstrate
a dual-quaternion-based approach for the product of exponentials that offers
computational advantages over matrices. We mitigate the challenge of visualizing
quaternions by using the relations of Fig. 1 in an algebraic derivation.

A key technique in our derivation is to rewrite factors with singularities into
forms with well-defined Taylor series which we can use for evaluation near the
singularity. Grassia applies this idea to ordinary quaternions [8]. For example, the

1 Software available at http://amino.dyalab.org
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ordinary quaternion exponential contains the factor sin θ
θ , which has a singularity

at θ = 0. However, we can use a Taylor series to remove the singularity:

sin θ

θ
= 1− 1

6
θ2 +

1

120
θ4 − 1

5040
θ6 + . . . =⇒ lim

θ→0

sin θ

θ
= 1 . (1)

Near the singularity, we need only the initial terms of the Taylor series to
evaluate the factor to within machine precision because the final terms will be
smaller than the precision we can represent. For (1), we have alternating positive
and negative terms of decreasing magnitude, so the error after evaluating the
first i terms is no greater than the magnitude of term i+1. We need not evaluate
any additional terms with when this error is less than machine precision. For
example, when θ4 is less than machine precision, we may can achieve minimum
possible numerical error using only the first two terms 1− 1

6θ
2.

sin θ = θ − 1
6
θ3 + 1

120
θ5 + . . .

cos θ = 1− 1
2
θ2 + 1

24
θ4 + . . .

sin θ

θ
= 1− 1

6
θ2 + 1

120
θ4 + . . .

θ

sin θ
= 1 + 1

6
θ2 + 7

360
θ4 + . . .

1−cos θ
θ2

= 1
2
− 1

24
θ2 + 1

720
θ4 + . . .

Table 1. Taylor Series for θ → 0

We extend this Taylor series construc-
tion to the dual quaternions, which have
similar—though more complicated—factors
containing singularities. We use quaternion
trigonometry (see Fig. 1) to rewrite these
factors into forms that are defined in the
limit via Taylor series. Table 1 lists several
common Taylor series.

We use the following notation. Bold uppercase R denotes a matrix. Bold
lowercase v denotes a vector. An over-arrow ~v denotes a length-three vector
over the basis units ı̂, ̂, k̂. An over-hat û denotes a unit vector (|u| = 1). An
over-tilde ñ denotes a dual number (ñ = nreal + ndualε). The lowercase script h

denotes an ordinary quaternion. The uppercase script S denotes a dual quaternion
(S = sreal + sdualε). We abbreviate sin and cos with s and c.

2 Related Work

Brockett connected robot kinematics with Lie groups expressed as matrix expo-
nentials [2]. This product of exponentials formulation has become the conventional
approach for robot kinematics [14,16]. Our work presents a practical connection
between such exponential coordinates and quaternion-based representations, and
we show that a quaternion-based representation can offer efficiency advantages
compared to matrix-based representations.

Quaternions provide an alternative to matrix-based geometric representations.
Unit quaternions represent rotations [9] with four elements: a 3-element vector
and a scalar that together encode the rotational axis, and the sine and cosine
of the rotational angle. Though vector analysis became the preferred notation
in many areas [1,7], quaternions have seen renewed use in recent years as a
practical representation for rotation, interpolation, and estimation [8,13,15,20].
The computational advantages of quaternions in such applications suggest that
a quaternion-based approach could merit investigation in other areas typically
addressed using vector or matrix representations.

Practical Dual Quaternions 3
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Quaternions over dual numbers—the dual quaternion—can represent both
rotation and translation [22,23]. Selig presents a modern context for dual quater-
nions and more broadly Clifford algebras in relation to Lie algebras [18]. Yang
and Freudenstein applied dual quaternions to the analysis of spatial mechanisms
(closed chains) [27]. Several recent authors have applied dual quaternions to
robot kinematics [4,5,10,12,17,21,25]. Wang, et. al. compare dual quaternion
and homogeneous matrix approaches, showing that dual quaternions are often
more efficient [26]. We continue this application of dual quaternions to robot
kinematics by addressing issues of singularities and numerical robustness in the
dual quaternion exponential and logarithm.

Though the form of the dual quaternion exponential is well established [6,19],
there is, to our knowledge, no prior work that addresses the zero-angle singularity
in the dual quaternion exponential and logarithm, which is necessary to practically
use dual quaternions in the product of exponentials formulation. Han, et. al.
observe, though do not address, the zero-angle discontinuity [10]. Wang, et. al.
provide an approximation of the logarithm [25]. In this work, we present new,
exact derivations of the dual quaternion exponential and logarithm that remove
the zero-angle singularity, enabling the practical use of dual quaternions as
exponential coordinates. Furthermore, we show that implicitly representing a
dual quaternion as an ordinary quaternion and a translation vector is both more
compact and more computationally efficient for common kinematics operations
than either explicit dual quaternions or homogeneous transformation matrices.

3 Rotation and Transformation Matrix Maps

We briefly restate the key matrix operations for robot kinematics to compare
against the quaternion forms and illustrate the Taylor series construction.

3.1 Rotation Matrix

We define the rotation matrix exponential and logarithm using the rotation vector,
i.e., the rotation axis scaled by the rotation angle, because separating the axis
and angle results in an undefined axis when the angle is zero and poor numerical
stability when attempting to construct the unit axis for small angles [8].

The rotation matrix exponential [14] is:

e[ω] = I+
sin |ω|
|ω| [ω] +

1− cos |ω|
|ω|2

[ω]2, where [ω] =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 . (2)

We remove the singularity at |ω| = 0 via the Taylor series in Table 1 for sin|ω|
|ω|

and 1−cos|ω|

|ω|2
.

The rotation matrix logarithm [14] is:

~ω =
θ

2 sin θ





r32 − r23
r13 − r30
r21 − r12



 , where θ = cos−1

(
r11 + r22 + r33 − 1

2

)

. (3)
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We remove the singularity at θ = 0 via the Taylor series in Table 1 for θ
sin θ .

3.2 Transformation Matrix:

The transformation matrix exponential [14] is:

exp

(
~ω

~ν

)

=




e[ω]

(

I+ 1−cos|ω|
|ω| [ω] +

1−
sin|ω|
|ω|

|ω|2
[ω]

2

)

~ν

0 1



 . (4)

We remove the singularity at |ω| = 0 via the Taylor series in Table 1 for
1−cos|ω|

|ω|2
and the following:

1− sin|ω|
|ω|

|ω|2
=

1

6
− |ω|2

120
+

|ω|4
5040

+ . . . (5)

The transformation matrix logarithm [14] is given by:

ln

[
R v

0 1

]

=

(
lnR

(

I− [ω]
2 + 2s−|ω|(1+c)

2s|ω|2
[ω]

2
)

v

)

. (6)

We remove the singularity at |ω| = 0 via the following Taylor series:

2 sin |ω| − |ω| (1 + cos |ω|)
2 (sin |ω|) |ω|2

=
1

12
+

|ω|2
720

+
|ω|4
30240

+ . . . (7)

4 Ordinary, Dual, and Implicit Quaternion Maps

Now, we present the key contribution of this work: new, singularity free forms of
the dual quaternion exponential and logarithm and their corresponding forms
for the implicit, quaternion-translation representation. Our derivation starts
with the established ordinary quaterion exponential and logarithm (see Sec. 4.1).
Then, we derive the dual quaternion forms (see Sec. 4.2) by using the quaternion
trigonometry (see Fig. 1) to construct Taylor series that remove the singularities.
Finally, we derive the equivalent exponential and logarithm for the more compact
and efficient quaternion-translation representation (see Sec. 4.3).

4.1 Ordinary Quaternions

Ordinary quaternions extend complex numbers (̂ı2 = −1) to three units:

ı̂2 = ̂2 = k̂
2
= ı̂̂k̂ = −1 . (8)

Practical Dual Quaternions 5
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A quaternion, therefore, has four elements: the real term (scalar) and the
coefficients of each quaternion unit ı̂, ̂, and k̂ (vector). We use the following
notations for the quaternion elements:

h = xı̂+ ŷ+ zk̂
︸ ︷︷ ︸

vector ~v

+ w
︸︷︷︸

scalar

= ~v + w . (9)

The dot (·) and cross (×) products, though actually introduced as an alterna-
tive to quaternions [7], allow a compact definition of the quaternion multiplication
(⊗):

q ⊗ p = ~qv × ~pv + qw~pv + pw~qv
︸ ︷︷ ︸

vector ~v

+ qwpw − ~qv · ~pv
︸ ︷︷ ︸

scalar

. (10)

The quaternion conjugate and rotation operation are:

h∗ = −~hv + hw and ap = ahb ⊗ bp⊗ ah∗
b . (11)

The quaternion exponential is:

e~v+w = ew
((

sin |v|
|v|

)

~v + cos |v|
)

. (12)

When |v| approaches zero, we can use the Taylor series for sin |v|
|v| in Table 1.

To compute the logarithm, we first find the angle between the vector ~v and
scalar w parts of the quaternion. Then the logarithm is as follows:

φ = atan2 (|v| , w) and ln h =
φ

|v|~v + ln |h | . (13)

When |v| approaches zero, we handle the singularity in φ
|v| by rewriting as

follows:

φ

|v| =
φ
|h|

|v|
|h|

=

φ
|h|

sinφ
=

φ
sinφ

|h | =
1 + θ2

6 + 7θ4

360 + 31θ6

15120 + . . .

|h | . (14)

4.2 Dual Quaternion

Dual quaternions are a compact representation that offers useful analytic prop-
erties. We briefly review the use of dual quaternions for kinematics before
introducing our new derivations of the exponential and logarithm to handle the
small-angle singularity. For a more thorough overview of dual quaternions for
kinematics, please see [18].

Dual quaternions combine ordinary quaternions with the dual numbers, ε,
defined as:

ε2 = 0 and ε 6= 0 . (15)

Practical Dual Quaternions 6
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A dual quaternion will thus have eight coefficients covering all combinations
of the quaternion elements, dual element, and scalars. We write a dual quaternion
as:

S = h + d ε = hxı̂+ hy ̂+ hzk̂ + hw +
(

dxı̂+ dy ̂+ dzk̂ + dw

)

ε . (16)

The Euclidean transformation consisting of rotation h and translation ~v

corresponds to the following dual quaternion.

S = h + d ε = h +
1

2
~v ⊗ hε and ~v = 2d ⊗ h∗ . (17)

Multiplication of dual quaternions will chain successive transforms.

aSc =
aSb ⊗ bSc = (ahb +

adbε)⊗
(
bhc +

bdcε
)

= ahb ⊗ bhc +
(
ahb ⊗ bdc +

adb ⊗ bhc
)
ε . (18)

Rewriting (18) in terms of a transformation and a point yields the dual
quaternion form to transform a point. An equivalent derivation extends (11) to
the dual numbers.

aSc =
aSb ⊗

(
1 + bpε

)
 

ap =
(
2d + h ⊗ bp

)
⊗ h∗ (19)

The Taylor series for functions of dual numbers yields a useful property: all
higher-order terms containing ε2 cancel to zero.

f(r + dε) = f(r) +
f ′(r)

1!
(dε) +

f ′′(r)

2! ✟
✟
✟✯

0
(dε)2 +

f ′′′(r)

3! ✟
✟
✟✯

0
(dε)3 +✟

✟✯
0

. . .

= f(r) + εdf ′(r) . (20)

f(r + dǫ) = f(r) + εd(f ′(r))
cos (r + dε) = cos r − εd sin r
sin (r + dε) = sin r + εd cos r

tan−1 (r + dε) = tan−1 r + εd

r2+1

exp (r + dε) = er + εerd
ln (r + dε) = ln r + d

r
ε√

r + dε =
√
r + ε

d

2
√
r

Table 2. Dual numbers functions

The dual number Taylor series (20) en-
ables evaluation of dual number functions
using only the value and derivative of the
real function. We summarize several rele-
vant dual functions in Table 2.

Singularity-Free Dual Quaternion Ex-

ponential To derive a suitable form of the
dual quaternion exponential, we begin by rewriting the ordinary quaternion
exponential (12) over dual numbers.

φ̃ =
√

(hx + dxε)2 + (hy + dzε)2 + (hy + dzε)2

eS = ehw+dwε

(

sin φ̃

φ̃

(

(hx + dxε) ı̂+ (hy + dyε) ̂+ (hy + dzε) k̂
)

+ cos φ̃

)

(21)

Direct evaluation of (21) must contend with the singularity (zero denominator)

in the factor sin φ̃

φ̃
. To handle the singularity, we will algebraically expand the

Practical Dual Quaternions 7
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dual arithmetic and rewrite factors based on quaternion trigonometry into forms
where we can find suitable Taylor series.

First, we expand the dual quaternion angle φ̃.

φ̃ =
√

(hx + dxε)2 + (hy + dzε)2 + (hy + dzε)2

=
√

h2
x + h2

y + h2
y +

hxdx + hydy + hydz
√

h2
x + h2

y + h2
y

ε = φ+
γ

φ
ε (22)

where φ is the same as the ordinary quaternion angle and γ = ~hv · ~dv.
The dual sin and cos are then

cos φ̃ = c − γ

φ
sε and sin φ̃ = s +

γ

φ
cε . (23)

where s = sinφ and c = cosφ.

Next, we expand the dual sinc function sin φ̃

φ̃
and rearrange terms to find a

suitable Taylor series to handle the singularity at φ = 0:

sin φ̃

φ̃
=

sin(φ) + γ
φ cos(φ)ε

φ+ γ
φε

=
sin(φ)

φ
+ γ

(

cos(φ)− sin(φ)
φ

φ2

)

ε

=

(

1− φ2

6
+

φ4

120
+ . . .

)

︸ ︷︷ ︸

(sinφ)/φ

+ γ

(

−1

3
+

φ2

30
− φ4

840
+ . . .

)

︸ ︷︷ ︸

(cosφ−(sinφ)/φ)/φ2

ε . (24)

Finally, we expand the original form of the exponential in (21):

eS =
(
ehw + dwe

hwε
)
((

s

φ
~hv + c

)

+

(
s

φ
~dv +

c − s
φ

φ2
γ~hv −

s

φ
γ

)

ε

)

(25)

By applying the Taylor series in (24), we can stably evaluate (25) in the
neighborhood of φ = 0.

Singularity-Free Dual Quaternion Logarithm We derive the dual quater-
nion logarithm by expanding the ordinary form (13) with dual arithmetic.

ln S =
φ̃

ñ
(hv + dvε) + ln m̃ (26)

where φ̃, ñ, and m̃ are the dual number forms of φ, |hv|, and |h |, (respectively)
from (13). The dual arithmetic expands as follows:

ñ =
√

(hx + dxε)2 + (hy + dyε)2 + (hy + dzε)2 = |hv|+
~hv · ~dv

|hv|
ε = |hv|+ ndε,

m̃ = |h |+ h · d

|h | ε = |h |+mdε, and φ̃ = tan−1 |hv|+ ndε

hw + dwε
. (27)

Practical Dual Quaternions 8
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Further expanding φ̃ via the dual Taylor series for tan−1 (see Table 2):

φ̃ = atan2 (|hv| , hw) +

(

hwnd − |hv| dw

|h |2

)

ε = φ+

(

hwnd − |hv| dw

|h |2

)

ε . (28)

Next, we consider the dual φ̃
ñ . For this step we take guidance from the

quaternion trigonometry (see Fig. 1) to rewrite factors as trigonometric functions
for which we can find well-defined Taylor series. Specifically, we know that:

φ = atan2 (hw, |hv|) and
hw

|h | = cosφ and
|hv|
|h | = sinφ . (29)

We expand the dual arithmetic and reorder φ̃
ñ :

φ̃

ñ
=

φ+
(

hwnd−|hv|dw
|h|2

)

ε

|hv|+ ndε
=

φ

|hv|
+

(

hwnd

|hv| |h |2
− φnd

|hv|2
− dw

|h |2

)

ε . (30)

Equation (30) contains a singularity where |h | = 0. We evaluate the term φ
|hv|

as in (14). We rewrite the larger term in the dual coefficient as follows:

hwnd

|hv| |h |2
− φnd

|hv|2
= γ

(

hw

|hv|2 |h |2
− φ

|hv|3

)

=
γ

|h |3

(

hw

|h |
|h |2

|hv|2
− φ |h |3

|hv|3

)

. (31)

where γ = ~hv · ~dv. Then, we substitute the trigonometric functions and produce
the corresponding Taylor series:

γ

|h |3
(

cosφ

sin2 φ
− φ

sin3 φ

)

=
γ

|h |3
(

−2

3
− 1

5
φ2 − 17

420
φ4 + . . .

)

. (32)

Now that we have identified Taylor series to handle the singularities, we have
the full dual quaternion logarithm:

ln S =
φ

|hv|
~hv + ln |h |+





(
~hv · ~dv

)

α− dw

|h |2
~hv +

φ

|hv|
~dv +

h · d

|h |2



 ε

where α =
hw − φ

|hv|
|h |2

|hv|2
=

(

− 2
3 − φ2

5 − 17φ4

420 + . . .
)

|h | (33)

4.3 Quaternion-Translations as Implicit Dual Quaternions

Just as we may represent transformations with a rotation matrix and transla-
tion vector—i.e., the homogeneous transformation matrix—we can also repre-
sent transformations with a rotation quaternion and translation vector. The

Practical Dual Quaternions 9
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quaternion-translation form offers computational advantages: it consists of only
seven elements and chaining requires fewer operations than both the dual quater-
nion and matrix forms. However, because chaining is no longer a multiplication,
as with dual quaternions or matrices, analysis of quaternion-translation kine-
matics is more complicated, particularly for differential cases involving finding
derivatives or in integrating transforms. We address the analytic challenge of the
quaternion-translation form by reinterpreting quaternion-translations as implicit

dual quaternions, or alternately stated, by adopting an in-memory representation
of dual quaternions as a quaternion-translation. The implicit dual quaternion
combines the analytic convenience of dual quaternions and the computational
efficiency the quaternion-translation representation.

The quaternion-translation form stores separately the rotation quaterion h

and translation vector ~v, eliminating the coupling of rotation and translation in
the dual part of the dual quaternion:

h +
1

2
~v ⊗ hε

︸ ︷︷ ︸

explicit dual quaternion

rewrite
 




h

~v





︸ ︷︷ ︸

implicit dual quaternion

(34)

To transform a point, we first apply the rotation, then add the translation—the
same operations performed by the homogenous transformation matrix:

ap = ahb ⊗ bp⊗ (ahb)
∗
+ a~vb (35)

Implicit Exponential We derive the exponential for the implicit dual quteration
starting with (25), extracting the translation, and finally identifying Taylor series.

First, we simplify (25) to the pure case, i.e., zero scalar part:

exp (~ω + ~νε) =

(
s

φ
~ω + c

)

+

(
s

φ
~ν +

c − s
φ

φ2
γ~ω − s

φ
γ

)

ε

where γ = ~ω · ~ν and φ =
√
~ω · ~ω (36)

Next, we extract the translation from the dual part.

˘exp (~ω + ~νε) =




h

~v



 =





(
s
φ~ω + c

)

2
(

s
φ~ν +

c− s
φ

φ2 γ~ω − s
φγ
)

⊗
(

s
φ~ω + c

)∗




(37)

In (37), we may evaluate the rotation part h as in the ordinary quaternion
case. For the translation part ~v, we first algebraically simplify:

~v = 2

(
s

φ
~ν +

c − s
φ

φ2
γ~ω − s

φ
γ

)

⊗
(

s

φ
~ω + c

)∗

(38)

= 2

(

− s2

φ2
~ν × ~ω +

cs

φ
~ν +

c(c− s
φ ) + s2

φ2
γ~ω

)

(39)

Practical Dual Quaternions 10
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Then, we simplify the trigonometric factors, and we identify the common
subexpressions.

~v =
2s

φ

((
s

φ
~ω

)

× ~ν

)

+ c
2s

φ
~ν +

(

2− c 2sφ

φ2

)

γ~ω (40)

Using the Taylor series from Table 1 and for the new factor, we obtain:

˘exp (~ω + ~νε) =




h

~v



=





(
s
φ~ω + c

)

2s
φ

(
~hv × ~ν

)

+ c 2s
φ ~ν +

(
2−c 2s

φ

φ2

)

(~ω · ~ν) ~ω





s

φ
= 1− φ2

6
+

φ4

120
+ . . . and

2− c 2s
φ

φ2
=

4

3
− 4φ2

15
+

8φ4

315
+ . . . (41)

Implicit Logarithm We derive the implicit logarithm starting with (33),
substituting the translation vector, and finally identifying suitable Taylor series.

We begin with the dual quaternion logarithm (33):

l̆n




h

~v



 = ~ω + ~νε = ln

(

h +
1

2
~v ⊗ hε

)

(42)

The real part ~ω of the implicit logarithm is identical to the dual quaternion
case (33). We assume a unit quaternion |h | = 1, so the scalar part of the logarithm
is zero. (

l̆n




h

~v





)

real

= ~ω =
φ

|hv|
~hv =

φ

sinφ
~hv (43)

For the dual part ~ν, we expand (33), simplifying for the unit case |h | = 1:

(

l̆n




h

~v





)

dual

= ~ν = (γα− dw)~hv +
φ

|hv|
~dv + γ + hwdw

where ~dv =
1

2
~v × ~hv +

1

2
hw~v and dw = −1

2
~v · ~hv (44)

Substituting for dual part d in terms of translation ~v, we simplify to:

~ν = −1

2
~v · ~hv

(
hwφ
s − 1

s2

)

~hv +
hwφ

2s
~v +

φ

2s

(

~v × ~hv

)

(45)

Noting that hw = cosφ and ~ω = φ
sinφ

~hv, we further simplify to:

~ν =

(
~v

2

)

· ~ω

(

1− c φ
s

φ2

)

~ω + c
φ

s

(
~v

2

)

+

((
~v

2

)

× ω

)

(46)
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Finally, we identify the Taylor series to obtain the implicit logarithm as
follows:

l̆n




h

~v



 = ~ω + ~νε

=
φ

sinφ
~hv +

(

~v

2
· ~ω

(

1− c φ
s

φ2

)

~ω +

(
cφ

s

)
~v

2
+

~v

2
× ω

)

ε

cφ

s
= 1−φ2

3
− φ4

45
− . . . and

1− cφ
s

φ2
=

1

3
+

φ2

45
+

2φ4

945
+ . . . (47)

5 Application to Kinematics

Both matrix and quaterion representations may be used to compute the forward
kinematics of robot manipulators. We compare the different representations and
show that the quaternion-translation offers the best forward kinematics perfor-
mance. Mathematically, quaternion-translations require the fewest arithmetic
operations, and in our empirical evaluation, quaternion-translations require the
shortest execution time.

Table 3 and Table 4 compare operations for quaternion and matrix forms.
Table 5 summarizes the construction of transformations for single degree-

of-freedom joints using matrix and quaternion forms. We use the known axis
of joints to simplify construction over the general-case exponential. The result
shows that quaternion-translations require the fewest arithmetic operations.

Fig. 2 presents an empirical comparison of forward kinematics performance
in terms of speedup over the baseline matrix representation. The quaternion-
translation shows the best empirical performance, consistent with the operation
counts in Table 3, Table 4, and Table 5. Additionally, the explicit dual quaternion
also offers slightly better performance than matrices in our tests. Even though
matrices require fewer arithmetic operations to construct and chain, several
other advantages of the dual quaternions lead to the improved performance.
Dual quaternions are more compact than matrices, which reduces necessary
data shuffling, and quaternions require fewer operations for the exponential and
rotation chaining, which are heavily used in robots with many revolute frames.

6 Discussion

We often have the choice of a matrix or quaternion form for any particular
application; both will produce a mathematically-equivalent result, but the com-
putational efficiency will differ. For example, interpolation is commonly regarded
as a key application area for quaternions; however, we can achieve the same
result—at greater computational cost—using rotation matrices. Spherical lin-
ear interpolation (SLERP) [20] interpolates from an initial to final orientation

Practical Dual Quaternions 12
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Chain Rot./Tf. Normalize

Representation Storage Mul. Add Mul. Add Mul. Add Other

R
o
t. Rotation Matrix 9 27 18 9 6 27 15 sqrt(3)

Quaternion 4 16 12 15 15 8 3 sqrt
T
f.

Transformation Matrix 12 36 27 9 9 27 15 sqrt(3)
Dual Quaternion 8 48 40 28 28 12 3 sqrt

Quaternion-Translation 7 31 30 15 18 8 3 sqrt

Table 3. Requirements for storage, chaining, and point transformation. Quaternion-
based representations are more compact than matrices. Ordinary quaternions and
quaternion-translations are most efficient for chaining rotations and transformations,
respectively. Matrices are most efficient for rotating and transforming points.

Exponential Logarithm

Representation Mul. Add Other Mul. Add Other

R
o
t.

Rot. Matrix 17 15 sqrt, sincos 5 7 sqrt, atan2
Quaternion 9 2 sqrt, sincos, exp 8 3 sqrt(2), atan2, ln

Unit Q. 7 2 sqrt, sincos 7 2 sqrt, atan2

T
f.

Tf. Matrix 39 34 sqrt, sincos 31 32 sqrt, atan2
Dual Quat. 31 12 sqrt, sincos, exp 22 11 sqrt(2), atan2, ln

Unit Dual Q. 19 8 sqrt, sincos 18 9 sqrt, atan2
Quat.-Trans. 28 15 sqrt, sincos 28 16 sqrt, atan2

Table 4. Exponential and Logarithm Operation Counts. Ordinary and dual quaternions
are more efficient than their matrix equivalents. The quaternion-translation costs are
between the matrix and dual-quaternion.

Form Mul. Add Other

R
e
v
o
lu
te

Tf. Matrix

[

e[θû] v
0 1

]

12 13 sincos

Dual Quat. e
θ
2
û + ~v

2
⊗ e

θ
2
û
ε 19 12 sincos

Quat.-Trans.









e
θ
2
û

~v








3 0 sincos

P
ri
sm

a
ti
c Tf. Matrix

[

R ℓû
0 1

]

3 0 -

Dual Quat. h + ℓ
(

û

2
⊗ h

)

ε 4 0 -

Quat.-Trans.









h

ℓû








3 0 -

H
e
li
c
a
l

Tf. Matrix

[

e[θû] (kû) θ
0 1

]

15 13 sincos

Dual Quat. e
θ
2
û + θ kû

2
⊗ e

θ
2
û
ε 23 14 sincos

Quat.-Trans.









e
θ
2
û

(kû)θ








6 0 sincos

θ

c

p

û

~v

c

ℓ

û
p

c

θ

kθ

û
p

Table 5. Single degree-of-freedom joint transforms and operation counts. The
quaternion-translation representation is most efficient to construct.
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Jaco

UR10

Baxter
1.4

1.29

1.26

1.13

1.05

1.09

1

1

1

Tf. Matrix

Dual Quat.

Quat.-Trans.

Baxter

UR10

Jaco

Frame Counts

Robot Fixed Revolute

Baxter 73 15

UR10 7 6

Jaco 7 12

Fig. 2. Forward kinematics speedup (higher is better), demonstrating a 25%-40% perfor-
mance improvement using quaternion forms. We compare the execution time to compute
the forward kinematics for the Rethink Baxter, Universal Robots UR10, and Kinova
Jaco manipulators using transformation matrices, dual quaternions, and quaternion-
translations. The results are shown as speedup ( tbaseline

tnew
) over the transformation matrix

case. The tests were conducted on an Intel® Xeon E3-1275 v6 using the kinematics
implementations in the Amino (http://amino.dyalab.org) library.

with constant rotational axis and linearly-varying angle. The algebraic form of
SLERP [3] has a direct matrix equivalent:

h(τ) = h(0)⊗ exp
(
τ ln

(
(h(0))

∗ ⊗ h(1)
))

(48)

R(τ) = R(0) exp
(

τ ln
(

(R(0))
−1

R(1)
))

(49)

where h(0),R(0) is the initial orientation and h(1),R(1) is the final orientation.
Both (48) and (49) equivalently interpolate orientation. However, the quaternion
form (48) is more efficient to compute than the matrix form, and the more
commonly used geometric simplification of (48) is even more efficient [20].

Similarly, ordinary and dual quaternions provide computational advantages
for the blending or averaging of rotations and transformations [11,15], which
was described by Wahba [24] as optimal rotation based on a set of weighted
observations.

Generally, the matrix and quaternion representations of rotation and Euclidean
transformation share group structure. Just as the rotation and transformation
matrices form Lie groups with associated Lie algebras based on the exponential,
so too do the ordinary and dual quaternions form Lie groups and associated
algebras. We can map every quaternion representation to matrix equivalent.
Specifically, there is a surjective homomorphism (double-cover) from the ordinary
unit quaternions to the special orthogonal group SO(3) of rotation matrices.
Similarly, we have a surjective homomorphism from the dual unit quaternions to
the special Euclidean group SE(3) of homogeneous transformation matrices.

The results we have presented continue the broader developments of methods
based on ordinary and dual quaternions which offer computational advantages
over their matrix counterparts. The quaternion methods we have presented
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achieve mathematically-equivalent results, but are more compact and efficient,
than the matrices.

7 Conclusion

We have presented new derivations of the dual quaternion exponential and log-
arithm which handle the small-angle singularity and enable the use of dual
quaternions within the product of exponentials formulation of robot kinematics.
By extending our singularity-robust exponential and logarithm to the implicit
representation of dual quaternions as an ordinary quaternion and translation
vector, we demonstrate a 25%-40% performance improvement in kinematics
computation over the conventional homogeneous transformation matrices. Our
implementation is available as open source code2. These results show that dual
quaternion representations provide the same capabilities as transformation ma-
trices and offer computational advantages which may be especially useful for
resource-constrained systems.

Even though matrices are a widely-used representation for Euclidean trans-
formations, the quaternion forms are both more compact and—for most cases—
require fewer arithmetic operations. In the one case where matrices have an
efficiency advantage—transforming large numbers of points—it may still be
more efficient to chain transformations via quaternions and then convert the
final transform to a matrix to apply to the point set. We hope these deriva-
tions of singularity-free exponentials and logarithms for the quaternion forms of
transformations will enable widespread use of these more efficient representations.
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Errata

– Equation 5: corrected third partial term from |ω|2 to |ω|4.
– Table 2: added missing closed parenthesis to first line.
– Equation 47: corrected third coefficient from 1

945 to 2
945 .

– Equation 18: corrected real part from ahb ⊗ ahb to ahb ⊗ bhc.
– Equation 33: corrected third coefficient from 1

420 to 17
420 .
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