
4th Workshop on Formal Methods for Robotics and Automation, RSS, 2013

Software-Synthesis via LL(*)
for Context-Free Robot Programs

Arash Rouhani, Neil Dantam, and Mike Stilman

I. INTRODUCTION

Producing reliable software for robotic systems requires
formal techniques to ensure correctness. Some popular ap-
proaches model the discrete dynamics and computation of the
robot using finite state automata or linear temporal logic. We
can represent more complicated systems and tasks, and still
retain key guarantees on verifiability and runtime performance,
by modeling the system instead with a context-free grammar.
The challenge with a context-free model is the need for a
more advanced software synthesis algorithm. We address this
challenge by adapting the LL(*) parser generation algorithm,
originally developed for program translation, to the domain
of online robot control. We demonstrate this LL(*) parser
generation implementation in the Motion Grammar Kit, 1

permitting synthesis for robot control software for complex,
hierarchical, and recursive tasks.

This tool promotes development of reliable robot software
by automating production of executable code from powerful,
verifiable models. Context-free grammars can model robot
behavior, providing advantages in hierarchical task decomposi-
tion, verification, and supervisory control [4, 5]. To directly use
the grammar for robot control, it must be translated to machine
code, i.e, a computer program; this is parser generation.
This is a well studied problem in the field of compiler
development [1], but online robot control presents a unique
set of challenges. There are many parser types which handle
different subsets of the context-free set. Here we present the
LL(*) parser type [10] adapted to robot control. This parser
is strictly more powerful than the one used in [6]; therefore,
it generates software from a broader set of grammars.

The Motion Grammar is a model for robotic systems that
augments a context-free grammar with semantic rules for
continuous system dynamics. The terminal symbols of the
grammar represent system states or sensor readings. The pro-
ductions of the grammar form top-down task decomposition,
defining an online control policy for the robot. During oper-
ation, selected productions will execute the semantic rules to
compute input commands for the robot. Thus, controlling the
robot corresponds to parsing sensor readings online according
to the rules of the grammar.

There are several related modeling and verification ap-
proaches for robots. Language and Automata Theory [9]
was first applied to Discrete Event Systems (DES) by [11].
Hybrid systems extend this approach by including continuous
dynamics. Typically, the discrete dynamics are modeled with

1http://github.com/golems/motion-grammar-kit

finite state [2, 3, 8]. Linear Temporal Logic is a popular finite
state model [12, 7] which corresponds to Büchi Automata.
Our tool operates on Context-Free grammars, which are a
strict superset of finite automata. However, it is still possible
to verify safety properties of these systems [4].

II. LL(*) AND THE MOTION GRAMMAR KIT

The tool presented in this paper synthesizes a C-program
for a Motion Grammar using the LL(*) algorithm. This
generated Motion Parser controls the online operation of the
robot. For grammar symbols representing semantic rules, C-
function stubs are produced. These semantic rules represent
computation performed outside of the discrete grammar, e.g.,
multiplying a matrix or sending a Controller Area Network
message, and the user must fill in the stub appropriately. This
approach also decouples the parser generation tool from the
physical hardware, which improves flexibility. The generated
parser thus runs independently of the Motion Grammar Kit,
permitting efficient, real-time performance.

The LL(*) algorithm extends LL(1) and LL(k), which per-
form fixed lookahead, by permitting arbitrarily long lookahead
based on a finite automaton [10]. Because LL(*) was initially
developed for program translation, we introduce some modi-
fications to apply it to online control. The critical difference
between program translation and online control is time. In
program translation, tokens come from a static file available
a priori. In robot control, tokens come from sensor readings
in real-time. While a compiler need only give its output at
the end of the file or statement, a robot must continually
respond to its environment. We describe this constraint as
LL(1) Semantics [4], meaning that a robot must be able to
compute the immediate input without looking ahead to future
tokens or backtracking on previous input commands.

We statically ensure that the synthesized LL(*) parser is
Semantically LL(1). Whenever we reach a point in the parser
where there is a semantic rule available to execute, we ensure
that there is only a single possible semantic rule so that the
parser can decide the proper action to take. While this is a
restriction on the parser, it also provides an advantage. The
prediction step of LL(*) normally does not permit semantic
rule execution because these rules are not rewindable [1].
However, this is not a problem for a Semantically LL(1)
grammar, where any potentially executed rules following some
prefix will be identical. Thus, we can execute actions during
the LL(*) prediction, allowing code generation for more
grammars than otherwise possible.

http://github.com/golems/motion-grammar-kit


〈SERVE〉 → [¬CANEMPTY] {PICK} 〈POUR〉〈S1〉

| [¬CANEMPTY] {PICK} 〈POUR〉〈S2〉

| [CANEMPTY] {TRY NEWCAN} [¬CANEMPTY] 〈SERVE〉

| [CANEMPTY] {TRY NEWCAN} [CANEMPTY]

〈S1〉 → [GLASSFULL] {PLACE} {GIV EGLASS} 〈SERVE〉 {CHARGE}

〈S2〉 → [¬GLASSFULL ∧ CANEMPTY] {PLACE} 〈SERVE〉

〈POUR〉 → [¬GLASSFULL ∧ ¬CANEMPTY] {POUR} 〈POUR〉

| ε

Fig. 1: An example of a grammar

The robot should start serving. When serving, the robot should
pour cans of soda into glasses as long as there are nonempty cans
remaining. When pouring, the robot should keep pouring until either
the glass is full or the can is empty. If the glass becomes full, we
should serve the glass and then charge for the glass once we’re done
serving. Further, whenever pouring is completed, the can must be
placed down again.

Fig. 2: An declarative description of how to serve drinks

III. DEMONSTRATION

We propose to demonstrate a software verification and
synthesis example for a robot waiting tables. In this scenario,
customers order drinks and the robot serves a predefined liquid
in glasses from a stash of cans the robot is carrying around.
In similar human interactions, a waiter would come and serve
each patron and then collect the bill from each patron, thus the
robot should serve all patrons and collect the bills at the end.
This requires memory. A finite automata cannot model this
task for arbitrary number of customers. However, memory in
the form of a context-free stack compactly represents the task.
Figure 2 describes the task in natural language, and figure 1
describes the task as a context-free grammar. A parse tree for
a context-free production is shown in figure 3. Lastly, figure
4 shows the actual syntax used by the tool to represent that
production.

Though the actions in figure 1, i.e., {pick}, {place}, are
high-level, these can also be hierarchically decomposed within
the same grammar down to a discrete-time control loop to
track a trajectory [4].

Additionally, we will automatically verify the following
property, given as a regular expression, that the robot pours
no more drinks after charging for the order (ensuring safety
of the cash-register).

S = (¬{charge})∗ ({charge} (¬{pour})∗)? (1)

Finally, we note that the grammar in figure 2 cannot be
parsed by a LL(1) parser. The biggest obstacle is the lookahead
required to choose between the first two productions, as the
〈POUR〉 nonterminal can be infinitely long, meaning that no
fixed-lookahead LL(k) parser can parse it either.

REFERENCES

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Princi-
ples, Techniques, & Tools. Pearson, 2nd edition, 2007.

[2] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho. Hybrid
automata: An algorithmic approach to the specification and
verification of hybrid systems. Hybrid Systems, pages 209–229,
1993.

. . .

〈serve〉

[¬CANEMPTY] {pick} 〈pour〉

. . .

〈S1〉

. . .

Fig. 3: The first production from the grammar in figure 1
represented as part of a parse tree

(SERVE (pred (not can-empty)) (mu pick) POUR S1)

Fig. 4: The production in figure 3 written in the syntax
recognized by the motion grammar kit software

[3] C.G. Cassandras and Stéphane Lafortune. Introduction to
Discrete-Event Systems. Springer, 2nd edition, 2008.

[4] N. Dantam and M. Stilman. The motion grammar: Analysis
of a linguistic method for robot control (accepted). Trans. on
Robotics, 2013.

[5] N. Dantam, C. Nieto-Granda, H. Christensen, and M. Stilman.
Linguistic composition of semantic mapping and hybrid control.
In ISER, 2012.

[6] N. Dantam, A. Hereid, and M. Ames, A. Stilman. Correct
software synthesis for stable speed-controlled robotic walking
(accepted). In RSS. IEEE, 2013.

[7] Georgios Fainekos, Sriram Sankaranarayanan, Koichi Ueda, and
Hakan Yazarel. Verification of automotive control applications
using s-taliro. In Proceedings of the American Control Confer-
ence, 2012.

[8] T.A. Henzinger. The theory of hybrid automata. In Symposium
on Logic in Computer Science, pages 278–292. IEEE, 1996.

[9] J.E. Hopcroft and J.D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison Wesley, Reading,
MA, 1979.

[10] T. Parr and K. Fisher. LL (*): the foundation of the antlr parser
generator. In Proceedings of the 32nd ACM SIGPLAN con-
ference on Programming language design and implementation,
pages 425–436. ACM, 2011.

[11] P. J. Ramadge and W. M. Wonham. Supervisory control of a
class of discrete event processes. Analysis and Optimization of
Systems, 25(1):206–230, January 1987.

[12] S. Sarid, B. Xu, and H. Kress-Gazit. Guaranteeing high-level
behaviors while exploring partially known maps. In RSS. IEEE,
2012.


	Introduction
	LL(*) and the Motion Grammar Kit
	Demonstration

